-
Câu hỏi:
Trong không gian Oxyz cho ba vectơ \(\overrightarrow{a}=(-1;1;0)\), \(\overrightarrow{b}=(1;1;0)\) và \(\overrightarrow{c}=(1;1;1)\). Trong các mệnh đề sau, mệnh đề nào sai?
-
A.
\(\overrightarrow{a}\bot \overrightarrow{b}\)
-
B.
\(\left| \overrightarrow{c} \right|=\sqrt{3}\)
- C. \(\overrightarrow{b}\bot \overrightarrow{c}\)
- D. \(\left| \overrightarrow{a} \right|=\sqrt{2}\)
Lời giải tham khảo:
Đáp án đúng: C
-
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Trong không gian Oxyz , phương trình của mặt phẳng (P) đi qua điểm\(M\left( -2;3;1 \right)\) và song song với mặt phẳng \(\left( Q \right):4x-2y+3z-5=0\) là
- Trong không gian Oxyz cho ba vectơ \(\overrightarrow{a}=(-1;1;0)\), \(\overrightarrow{b}=(1;1;0)\) và \(\overrightarrow{c}=(1;1;1)\). Trong các mệnh đề sau, mệnh đề nào sai?
- Trong không gian Oxyz cho hai điểm M(0;3;7) và I(12;5;0). Tìm tọa độ N sao cho I là trung điểm của MN.
- Khoảng cách từ điểm M(-2; -4; 3) đến mặt phẳng (P) có phương trình 2x – y + 2z – 3 = 0 là:
- Trong không gian Oxyz, viết phương trình mặt phẳng đi qua điểm A(-4;1;-2) và vuông góc với hai mặt phẳng (α): 2x-3y+5z-4=0, (β): x+4y-2z+3=0
- Trong không gian Oxyz cho 2 điểm A(1;2;3), B(4;4;5). Tọa độ điểm M\( \in \) (Oxy) sao cho tổng \(M{A^2} + M{B^2}\) nhỏ nhất là:
- Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x - y + 4z - 4 = 0 và mặt cầu (S): \({x^2} + {y^2} + {z^2} - 4x - 10z + 4 = 0\) . Mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn có bán kính bằng:
- Khoảng cách giữa hai mặt phẳng (P): \(x-2y+z+5=0\) và (Q): \(2x-4y+2\text{z}+1=0\)
- Cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 2x - 4y + z - 1 = 0\). Tâm I và bán kính R của mặt cầu (S) là:
- Trong không gian với hệ tọa độ Oxyz, cho điểm \(B\left( 2;-1;-3 \right)\), B' là điểm đối xứng với B qua mặt phẳng (Oxy).Tìm tọa độ điểm B .
- Trong không gian với hệ trục tọa độ Oxy, cho mặt cầu \((S):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2x-4y-6z+m-3=0\) .Tìm số thực m để \(\left( \beta \right):2x-y+2z-8=0\) cắt (S) theo một đường tròn có chu vi bằng \(8\pi \).
- Cho hai điểm A(-3; 1; 2) và B(1; 0; 4). Mặt phẳng đi qua A và vuông góc với đường thẳng AB có phương trình là:
- Trong hệ trục tọa độ Oxyz cho \(\overrightarrow u = \left( {4;3;4} \right),\overrightarrow v = \left( {2; - 1;2} \right),\overrightarrow w = \left( {1;2;1} \right)\). Khi đó \(\left[ {\overrightarrow u ,\overrightarrow v } \right]\overrightarrow w \) là:
- Phương trình mặt phẳng đi qua 2 điểm A(1; -1; 5), B(0; 0; 1) và song song với Oy là
- Cho 4 điềm A(3; -2; -2), B(3; 2; 0), C(0; 2; 1) và D(-1; 1; 2). Mặt cầu tâm A và tiếp xúc với mặt phẳng (BCD) có phương trình là:
- Viết phương trình mặt cầu (S) có tâm I(1 ; 0 ; -2) , bán kính R = \(\sqrt 2 \)
- Vectơ pháp tuyến của mặt phẳng 2x - y –z =0?
- Hai mặt phẳng \(\left( \alpha \right)\): 3x + 2y – z + 1 = 0 và \(\left( {\alpha '} \right)\): 3x + y + 10z – 1 = 0
- Trong các khằng định sau, khẳng định nào đúng? phương trình của mặt phẳng (Oxz) là: \(z=0\)
- Cho 2 điểm A(2; 4; 1), B(–2; 2; –3). Phương trình mặt cầu (S) đi qua điểm A và có tâm B là:
- Trong không gian Oxyz cho các điểm A(3; -4; 0), B(0; 2; 4), C(4; 2; 1). Tọa độ điểm D trên trục Ox sao cho AD = BC là:
- Viết phương trình mặt phẳng \(\left( \alpha \right)\) đi qua 2 điểm A(2; -1; 4), B(3; 2; -1) và \(\left( \alpha \right)\) vuông góc với mặt phẳng \(\left( \beta \right):x + y + 2z - 3 = 0\)
- Viết phương trình mặt phẳng \(\left( \alpha \right)\) đi qua M(2; 1; 4) và cắt các tia Ox, Oy, Oz lần lượt tại A, B, C sao cho tam giác ABC đều
- Cho hai mặt phẳng (P):3x + 3y - z + 1 = 0; (Q): (m-1)x + y - (m+2)z - 3 = 0 . Xác định m để hai mặt phẳng (P), (Q) vuông góc với nhau.
- Trong không gian với hệ trục tọa độ Oxyz, cho tam giác BCD có B(-1; 0; 3), C(2; -2; 0)