YOMEDIA
NONE
  • Câu hỏi:

    Trong không gian tọa độ Oxyz, cho mặt phẳng \(\left( P \right):x-2y-2z+10=0\) và 2 đường thẳng \({{\textΔ}_{1}}:\frac{x-2}{1}=\frac{y}{1}=\frac{z-1}{1}\) và \({{\textΔ}_{2}}:\frac{x-2}{1}=\frac{y}{1}=\frac{z+3}{4}\). Viết phương trình mặt cầu (S) có tâm thuộc \({{\textΔ}_{1}}\) đồng thời tiếp xúc với \({{\textΔ}_{2}}\) và (P).

    • A. \(\left( S \right):{{\left( x+\frac{13}{3} \right)}^{2}}+{{\left( y-\frac{7}{3} \right)}^{2}}+{{\left( z-\frac{10}{3} \right)}^{2}}=1\)
    • B. \(\left( S \right):{{\left( x-\frac{13}{3} \right)}^{2}}+{{\left( y-\frac{7}{3} \right)}^{2}}+{{\left( z-\frac{10}{3} \right)}^{2}}=1\)
    • C. \(\left( S \right):{{\left( x-\frac{13}{3} \right)}^{2}}+{{\left( y+\frac{7}{3} \right)}^{2}}+{{\left( z-\frac{10}{3} \right)}^{2}}=1\)
    • D. \(\left( S \right):{{\left( x-\frac{13}{3} \right)}^{2}}+{{\left( y-\frac{7}{3} \right)}^{2}}+{{\left( z+\frac{10}{3} \right)}^{2}}=1\)

    Lời giải tham khảo:

    Đáp án đúng: B

    Gọi \(I\left( 2+t;t;t+1 \right)\in {{\textΔ}_{1}}\) là tâm của mặt cầu. \({{\textΔ}_{2}}\) xác định qua \(M\left( 2;0;-3 \right),\overrightarrow{{{u}_{{{\textΔ}_{2}}}}}=\left( 1;1;4 \right)\)

    Ta có: 

    \(d\left( I;{{\textΔ}_{2}} \right)=d\left( I;\left( P \right) \right)\)

    Khi đó \(d\left( I;\left( P \right) \right)=\frac{\left| 2+t-2t-2\left( 1+t \right)+10 \right|}{\sqrt{1+4+4}}=\frac{\left| 10-3t \right|}{3}\)

    \(\overrightarrow{IM}\left( -t;-t;-4-t \right) \\\Rightarrow d\left( I;{{\textΔ}_{2}} \right)=\frac{\left| \left[ \overrightarrow{IM};\overrightarrow{{{u}_{{{\textΔ}_{2}}}}} \right] \right|}{\left| \overrightarrow{{{u}_{{{\textΔ}_{2}}}}} \right|}=\frac{\sqrt{2{{\left( 3t-4 \right)}^{2}}}}{\sqrt{1+1+16}}=\frac{\left| 3t-4 \right|}{3}\)

    Cho \(\frac{\left| 10-3t \right|}{3}=\frac{\left| 3t-4 \right|}{3}\Leftrightarrow t=\frac{7}{3}\Rightarrow I\left( \frac{13}{3};\frac{7}{3};\frac{10}{3} \right)\)

    Vậy phương trình mặt cầu \(\left( S \right):{{\left( x-\frac{13}{3} \right)}^{2}}+{{\left( y-\frac{7}{3} \right)}^{2}}+{{\left( z-\frac{10}{3} \right)}^{2}}=1\).

    ATNETWORK

Mã câu hỏi: 227469

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
NONE
ON