-
Đáp án D
Cả 4 biện pháp trên đều góp phần tạo nên sự phát triển bền vững.
Ý II: 3R là reduce - reuse – recycle
Câu hỏi:Tìm tất cả các giá trị thực của tham số m để phương trình có nghiệm đúng \(\forall x \in \mathbb{R}.\)
- A. \(m \in \left( { - \infty ; - 1} \right)\left( {0; + \infty } \right)\)
- B. \(m \in \left( { - 1;0} \right)\)
- C. \(m \in \left( {0;1} \right)\)
- D. \(m \in \left( { - \infty ; - 1} \right)\)
Đáp án đúng: B
\(\begin{array}{l} {\log _2}(3{x^2} - 2mx - {m^2} - 2m + 4) > 1 + {\log _2}({x^2} + 2),\forall x \in \mathbb{R}\\ \Leftrightarrow {\log _2}(3{x^2} - 2mx - {m^2} - 2m + 4) > {\log _2}2 + {\log _2}({x^2} + 2) ,\forall x \in \mathbb{R}\\ \Leftrightarrow 3{x^2} - 2mx - {m^2} - 2m + 4 > {x^2} + 4,\forall x \in \mathbb{R} \\ \Leftrightarrow {x^2} - 2mx - {m^2} - 2m > 0,\forall x \in \mathbb{R}\,(*) \end{array}\)(*) xảy ra khi: \(\Delta ' = 2{m^2} + 2m < 0 \Leftrightarrow m > - 1.\)
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ GIẢI PHƯƠNG TRÌNH VÀ BẤT PHƯƠNG TRÌNH LOGARIT BẰNG PHƯƠNG PHÁP ĐƯA VỀ CÙNG CƠ SỐ.
- Giải phương trình {log_2/5}|x+3|+{log_5/2}(x+4)=0
- Tìm m để phương trình {log_3}(1-x)^2+{log_1/3}(x+m-4)=0 có hai nghiệm thực phân biệt
- Tìm tập nghiệm S của bất phương trình {log_pi/4}(x^2+1)
- Tìm tập nghiệm S của bất phương trình 2{log _2}(x - 1)
- Tìm số nghiệm của phương trình {log _2}(x + 3) = {log _{sqrt 2 }}x.
- Phương trình {log_1/3}(2^x+1)+{log_3}(4^x+5)=1 có tập nghiệm là tập nào sau đây?
- ìm tập nghiệm S của bất phương trình {log_2}(3x-2)>{log_2}(6-5x)
- Tìm tập nghiệm S của bất phương trình {log_2}(x-2)+{log_2}x>=2
- Tìm m để bất phương trình 1+{log_5}(x^2+1)>={log_5}(mx^2+4x+m) thỏa mãn với mọi x thuộc R
- Tìm số nghiệm của phương trình {log_2}(x^2-3)-{log_2}(6x-10)+1=0