YOMEDIA
NONE
  • Câu hỏi:

    Cho đường tròn (O) và một dây AB. Vẽ đường kính CD vuông góc với AB (D thuộc cung nhỏ AB). Trên cung nhỏ BC lấy một điểm N. Các đường thẳng CN và DN lần lượt cắt các đường thẳng AB tại E và F. Tiếp tuyến của đường tròn (O) tại N cắt các đường thẳng AB tại I. Chọn đáp án đúng.

    • A.  \(\widehat {IEN} = 2\widehat {NDC}\)
    • B. Các tam giác FNI,INE cân
    • C.  \( \widehat {DNI} = 3\widehat {DCN}\)
    • D. Tất cả các câu đều sai

    Lời giải tham khảo:

    Đáp án đúng: B

    Ta có tam giác AOB cân tại O nên dễ dàng chỉ ra được

    \(\begin{array}{l} sd\widehat {AD} = sd\widehat {DB}\\ \widehat {IFN} = \frac{1}{2}(sd\widehat {BN} + sd\widehat {AD}) = \frac{1}{2}(sd\widehat {BN} + sd\widehat {BD}) = \frac{1}{2}sd\widehat {DN} = \widehat {INF} \end{array}\)

    Suy ra tam giác FIN cân tại I

    Ta có:

    \(\begin{array}{*{20}{l}} {{{\hat N}_1} + \widehat {{N_3}} = {{90}^0} \Rightarrow {{\hat N}_1} + \widehat {{C_4}} = {{90}^0}}\\ {\widehat {{E_1}} = \frac{1}{2}\left( {sd\widehat {AC} - sd\widehat {BN}} \right)}\\ { = \frac{1}{2}\left( {s\widehat {BC} - s\widehat {CN}} \right) = \frac{1}{2}s\widehat {NC}}\\ { \Rightarrow \widehat {{C_4}} + \widehat {{E_1}} = \frac{1}{2}s\widehat {DN} + \frac{1}{2}s\widehat {NC}}\\ { = \frac{1}{2}s\widehat {DC} = {{90}^0}}\\ { \Rightarrow \widehat {{E_1}} = \widehat {{N_1}}} \end{array}\)

    Do đó ΔINE cân tại I.

    ATNETWORK

Mã câu hỏi: 218977

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON