YOMEDIA
NONE
  • Câu hỏi:

    Số nghiệm của phương trình \(\cos x = \frac{1}{2}\) thuộc đoạn \(\left[ { - 2\pi ;2\pi } \right]\) là?

    • A. 4
    • B. 2
    • C. 3
    • D. 1

    Lời giải tham khảo:

    Đáp án đúng: A

    Phương pháp giải:

    Áp dụng các công thức giải phương trình lượng giác cơ bản rồi kết hợp điều kiện đã cho để chọn nghiệm thỏa mãn.

    Lời giải chi tiết:

    Ta có: \(\cos x = \frac{1}{2}\)\( \Leftrightarrow \)\(\left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi \\x = - \frac{\pi }{3} + k2\pi \end{array} \right.\), \(k \in \mathbb{Z}\).

    Xét \(x = \frac{\pi }{3} + k2\pi \), do \(x \in \left[ { - 2\pi ;2\pi } \right]\) và \(k \in \mathbb{Z}\) nên \( - 2\pi \le \frac{\pi }{3} + k2\pi \le 2\pi \)\( \Rightarrow k = - 1\); \(k = 0\).

    Xét \(x = - \frac{\pi }{3} + k2\pi \), do \(x \in \left[ { - 2\pi ;2\pi } \right]\) và \(k \in \mathbb{Z}\) nên \( - 2\pi \le - \frac{\pi }{3} + k2\pi \le 2\pi \)\( \Rightarrow k = 1\); \(k = 0\).

    Vậy phương trình có \(4\) nghiệm trên đoạn \(\left[ { - 2\pi ;2\pi } \right]\).

    Đáp án A

    ATNETWORK

Mã câu hỏi: 449946

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON