• Câu hỏi:

    Ngân hàng đề thi gồm 100 câu hỏi, mỗi đề thi có 5 câu. Một học sinh học thuộc 80 câu. Tính xác suất để học sinh đó rút ngẫu nhiên được một đề thi có 4 câu học thuộc.

    • A. \(P\left( A \right) = \frac{{C_{80}^4}}{{C_{100}^5}}\)
    • B. \(P\left( A \right) = \frac{{C_{80}^4 + C_{20}^1}}{{C_{100}^5}}\)
    • C. \(P\left( A \right) = \frac{{C_{20}^1}}{{C_{100}^5}}\)
    • D. \(P\left( A \right) = \frac{{C_{80}^4C_{20}^1}}{{C_{100}^5}}\)

    Lời giải tham khảo:

    Đáp án đúng: B

    Chọn 5 câu làm một đề \(\Omega  = C_{100}^5\)

    Chọn \(n(A) = C_{80}^4C_{20}^1 \Rightarrow P\left( A \right) = \frac{{C_{80}^4C_{20}^1}}{{C_{100}^5}}\)

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC