YOMEDIA
NONE
  • Câu hỏi:

    Một mảnh vườn hoa dạng hình tròn có bán kính bằng 5m. Phần đất trồng hoa là phần tô trong hình vẽ bên. Kinh phí trồng hoa là 50.000 đồng/\({{m}^{2}}\). Hỏi số tiền cần để trồng hoa trên diện tích phần đất đó là bao nhiêu, biết hai hình chữ nhật ABCD và MNPQ có AB=MQ=5m?

    • A. \({\rm{3}}{\rm{.641}}{\rm{.528}}\) đồng
    • B. \({\rm{3}}{\rm{.533}}{\rm{.057}}\) đồng
    • C. 3.641.529 đồng
    • D. 3.533.058 đồng

    Lời giải tham khảo:

    Đáp án đúng: B

    Đặt hệ trục Oxy như hình vẽ.

    Phương trình đường tròn \({{x}^{2}}+{{y}^{2}}=25\Leftrightarrow y=\pm \sqrt{25-{{x}^{2}}}\)

    Tìm được tọa độ điểm \(N\left( \frac{5\sqrt{3}}{2};\frac{5}{2} \right)\) (một giao điểm của đường tròn và đường thẳng \(y=\frac{5}{2}\)).

    Diện tích 4 phần trắng (không trồng cây) là: \({{S}_{1}}=4\int\limits_{\frac{5}{2}}^{\frac{5\sqrt{3}}{2}}{\left( \sqrt{25-{{x}^{2}}}-\frac{5}{2} \right)}\text{d}x\)

    Diện tích phần trồng rau bằng diện tích hình tròn trừ cho \({{S}_{1}}\), tức là \(S=\pi {{r}^{2}}-{{S}_{1}}=\pi {{.5}^{2}}-4\int\limits_{\frac{5}{2}}^{\frac{5\sqrt{3}}{2}}{\left( \sqrt{25-{{x}^{2}}}-\frac{5}{2} \right)}\text{d}x =25\pi -4\left( \frac{25\pi }{12}-\frac{5}{2}.\left( \frac{5\sqrt{3}}{2}-\frac{5}{2} \right) \right)=\frac{50\pi }{3}+25\sqrt{3}-25\).

    Số tiền cần để trồng hoa là: \(50000.S\approx 3533057\) đồng.

    ATNETWORK

Mã câu hỏi: 269017

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON