YOMEDIA
NONE
  • Câu hỏi:

    Cho hàm số \(y = f\left( x \right)\) có bảng xét dấu của đạo hàm như sau:

    Hàm số \(y = 3f\left( {x + 3} \right) - {x^3} + 12x\) nghịch biến trên khoảng nào dưới đây?

    • A. \(\left( { - 1;0} \right)\) 
    • B. \(\left( {0;2} \right)\) 
    • C. \(\left( { - \infty ; - 1} \right)\)
    • D. \(\left( {2; + \infty } \right)\)  

    Lời giải tham khảo:

    Đáp án đúng: D

    Ta có: \(y' = 3f'\left( {x + 3} \right) - 3{x^2} + 12\)

    Đặt \(t = x + 3 \Rightarrow x = t - 3\) ta có \(y' = 3f'\left( t \right) - 3{\left( {t - 3} \right)^2} + 12 = 3f'\left( t \right) - 3{t^2} + 18t - 15\)

    Để hàm số nghịch biến thì \(y' < 0 \Leftrightarrow 3f'\left( t \right) - 3{t^2} + 18t - 15 < 0 \Leftrightarrow f'\left( t \right) < {t^2} - 6t + 5\)

    Ta chọn \(t\) sao cho \(\left\{ \begin{array}{l}f'\left( t \right) < 0\\{t^2} - 6t + 5 > 0\end{array} \right.\)

    Từ bảng xét dấu hàm \(f'\left( x \right)\) ta thấy \(f'\left( x \right) < 0 \Leftrightarrow \left[ \begin{array}{l} - 1 < x < 1\\x > 5\end{array} \right.\)  nên  \(f'\left( t \right) < 0 \Leftrightarrow \left[ \begin{array}{l} - 1 < t < 1\\t > 5\end{array} \right.\)

    Khi đó: \(\left\{ \begin{array}{l}f'\left( t \right) < 0\\{t^2} - 6t + 5 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l} - 1 < t < 1\\t > 5\end{array} \right.\\\left[ \begin{array}{l}t > 5\\t < 1\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l} - 1 < t < 1\\t > 5\end{array} \right.\)

    Mà \(t = x + 3\) nên \(\left[ \begin{array}{l} - 1 < t < 1\\t > 5\end{array} \right. \Leftrightarrow \left[ \begin{array}{l} - 1 < x + 3 < 1\\x + 3 > 5\end{array} \right. \Leftrightarrow \left[ \begin{array}{l} - 4 < x <  - 2\\x > 2\end{array} \right.\)

    Vậy hàm số \(y = 3f\left( {x + 3} \right) - {x^3} + 12x\) nghich biến trên \(\left( { - 4;2} \right)\) và \(\left( {2; + \infty } \right)\).

    Chọn D.

    ATNETWORK

Mã câu hỏi: 377945

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON