YOMEDIA
NONE
  • Câu hỏi:

    Cho lăng trụ \(ABC.A'B'C'\) có thể tích bằng \(2.\) Gọi \(M,N\) lần lượt là hai điểm nằm trên cạnh \(AA',BB'\) sao cho \(M\) là trung điểm của \(AA'\) và \(BN = \frac{1}{2}NB'.\) Đường thẳng \(CM\) cắt đường thẳng \(C'A'\) tại \(P,\) đường thẳng \(CN\) cắt đường thẳng \(C'B'\) tại \(Q.\) Tính thể tích \(V\) của khối đa diện \(A'MPB'NQ.\)

    • A. \(V = \frac{{13}}{{18}}\) 
    • B. \(V = \frac{{23}}{9}\) 
    • C. \(V = \frac{5}{9}\) 
    • D. \(V = \frac{7}{{18}}\) 

    Lời giải tham khảo:

    Đáp án đúng: B

    Ta có \({V_{C.A'B'C'}} = \frac{1}{3}d\left( {C,\left( {A'B'C'} \right)} \right).{S_{A'B'C'}} = \frac{1}{3}{V_{ABC.A'B'C'}} = \frac{2}{3}\)

    Suy ra \({V_{C.ABB'A'}} = {V_{ABC.A'B'C'}} - {V_{C.A'B'C'}} = 2 - \frac{2}{3} = \frac{4}{3}\)

    Ta thấy \(ABNM\) là hình thang nên

    \(\begin{array}{l}{S_{ABNM}} = \frac{{\left( {AM + BN} \right)d\left( {BN;AM} \right)}}{2} = \frac{{\left( {\frac{{AA'}}{2} + \frac{{BB'}}{3}} \right).d\left( {BB',AA'} \right)}}{2}\\ = \frac{{\left( {\frac{{AA'}}{2} + \frac{{AA'}}{3}} \right).d\left( {BB',AA'} \right)}}{2} = \frac{5}{{12}}AA'.d\left( {BB',AA'} \right)\end{array}\)

    Mà \({S_{ABB'A'}} = AA'.d\left( {AA',BB'} \right) \Rightarrow {S_{ABNM}} = \frac{5}{{12}}.{S_{ABB'A'}}\)

     \(\begin{array}{l} \Rightarrow {V_{C.ABNM}} = \frac{1}{3}d\left( {C,\left( {ABNM} \right)} \right).{S_{ABNM}} = \frac{1}{3}d\left( {C,\left( {ABB'A'} \right)} \right).\frac{5}{{12}}.{S_{ABB'A'}}\\ = \frac{5}{{12}}.\frac{1}{3}d\left( {C,\left( {ABB'A'} \right)} \right).{S_{ABB'A'}} = \frac{5}{{12}}.{V_{CABB'A'}}.\end{array}\)

    Mà \({V_{C.ABB'A'}} = \frac{4}{3}\left( {cmt} \right) \Rightarrow {V_{C.ABNM}} = \frac{5}{{12}}.\frac{4}{3} = \frac{5}{9}.\)

    Suy ra \({V_{CC'B'NMA'}} = {V_{ABC.A'B'C'}} - {V_{C.ABNM}} = 2 - \frac{5}{9} = \frac{{13}}{9}.\)

    Ta có \(A'M//CC' \Rightarrow \frac{{PA'}}{{PC'}} = \frac{{A'M}}{{CC'}} = \frac{1}{2} \Rightarrow PA' = \frac{1}{2}PC' = A'C' \Rightarrow PC' = 2A'C'\)

    Và \(B'N//CC' \Rightarrow \frac{{B'N}}{{CC'}} = \frac{{QB'}}{{QC'}} = \frac{2}{3} \Rightarrow QC' = 3B'C'\)

    Mà \({S_{A'B'C'}} = \frac{1}{2}C'A'.C'B'\sin C'\) 

    \( \Rightarrow {S_{C'PQ}} = \frac{1}{2}C'P.C'Q.\sin C' = \frac{1}{2}.2.A'C'.3B'C'\sin C = 6.\left( {\frac{1}{2}A'C'.B'C'\sin C} \right) = 6{S_{A'B'C'}}\)

    Ta có: \({V_{C.C'PQ}} = \frac{1}{3}d\left( {C;\left( {A'B'C'} \right)} \right).{S_{C'PQ}} = \frac{1}{3}d\left( {C;\left( {A'B'C'} \right)} \right).6{S_{C'A'B'}} = 6.{V_{C.A'B'C'}} = 6.\frac{2}{3} = 4.\)

    Từ đó \({V_{A'MPB'NQ}} = {V_{C.C'PQ}} - {V_{CC'B'NMA'}} = 4 - \frac{{13}}{9} = \frac{{23}}{9}\).

    Chọn B.

    ADSENSE

Mã câu hỏi: 377954

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
AANETWORK
OFF