-
Câu hỏi:
Giá trị nhỏ nhất của biểu thức F(x; y) = y – x trên miền xác định bởi hệ: \(\left\{ {\begin{array}{*{20}{c}}
{y - 2x \le 2}\\
{2y - x \ge 4}\\
{x + y \le 5}
\end{array}} \right.\) là- A. min F(x; y) = 1 khi x = 2, y = 3;
- B. min F(x; y) = 2 khi x = 0, y = 2;
- C. min F(x; y) = 3 khi x = 1, y = 4;
- D. min F(x; y) = 7 khi x = 6, y = – 1.
Lời giải tham khảo:
Đáp án đúng: A
Ta tìm miền nghiệm xác định bởi hệ
Vẽ đường thẳng d1: y – 2x = 2, đường thẳng d1 qua hai điểm (0; 2) và (– 1; 0).
Ta xét điểm O(0; 0) thay vào phương trình đường thẳng ta có 0 – 2.0 = 0 < 2.
Do đó điểm O(0; 0) thuộc miền nghiệm của bất phương trình. Vậy miền nghiệm D1 là nửa mặt phẳng được chia bởi đường thẳng d1 chứa gốc tọa độ O kể cả bờ.
Vẽ đường thẳng d2: 2y – x = 4, đường thẳng d2 qua hai điểm (0; 2) và (– 4; 0).
Ta xét điểm O(0; 0) thay vào phương trình đường thẳng ta có 2.0 – 0 = 0 < 4 không thoả mãn bất phương trình 2y – x ≥ 4.
Do đó điểm O(0; 0) không thuộc nềm nghiệm của bất phương trình. Vậy miền nghiệm D2 là nửa mặt phẳng được chia bởi đường thẳng d2 không chứa gốc tọa độ O kể cả bờ.
Vẽ đường thẳng d3: x + y = 5, đường thẳng d1 qua hai điểm (0; 5) và (5; 0).
Xét điểm O(0; 0) thay vào phương trình đường thẳng ta có 0 + 0 = 0 < 5, thoả mãn bất phương trình x + y ≤ 5.
Do đó điểm O(0; 0) thuộc miền nghiệm của bất phương trình. Vậy miền nghiệm D3 là nửa mặt phẳng được chia bởi đường thẳng d3 chứa gốc tọa độ O kể cả bờ.
Miền nghiệm là phần không gạch chéo như hình vẽ.
Miền nghiệm của hệ là tam giác ABC với A(1; 4), B(0; 2), C(2; 3).
Ta tính giá trị của F(x; y) = y – x tại các giao điểm:
Tính F(x; y) = y – x suy ra F(1; 4) = 4 – 1 = 3.
Tính F(x; y) = y – x suy ra F(0; 2) = 2 – 0 = 2.
Tính F(x; y) = y – x suy ra F(2; 3) = 3 – 2 = 1.
Vậy min F(x; y) = 1 khi x = 2, y = 3.
Đáp án Đúng là: A
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Điểm O(0; 0) thuộc miền nghiệm của hệ bất phương trình nào dưới đây?
- Trong các điểm sau đây, điểm nào thuộc miền nghiệm của hệ bất phương trình
- Giá trị nhỏ nhất của biểu thức F(x; y) = y – x trên miền xác định bởi hệ:
- Trong các cặp số sau, cặp nào không là nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}} {x + y - 2 \le 0}\\ {2x - 3y + 2 > 0} \end{array}} \right.\) là
- Cho hệ \(\left\{ \begin{array}{l} 2x + 5y < 5(1)\\ x + \frac{3}{2}y < 5(2) \end{array} \right.\). Gọi S1 là tập nghiệm của bất phương trình (1), S2 là tập nghiệm của bất phương trình (2) và S là tập nghiệm của hệ thì
- Phần không bị gạch ở hình sau đây là biểu diễn miền nghiệm của hệ bất phương trình nào trong bốn hệ A, B, C, D (không kể bờ)?
- Giá trị lớn nhất của biết thức F(x; y) = x + 2y với điều kiện
- Giá trị nhỏ nhất của biết thức F(x; y) = x – 2y với điều kiện \(\left\{ {\begin{array}{*{20}{c}} {0 \le y \le 5}\\ {x \ge 0}\\ {x + y - 2 \ge 0}\\ {x - y - 2 \le 0} \end{array}} \right.\) là
- Điểm nào dưới đây không thuộc miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}2x + 3y - 1 > 0\\5x - y + 4
- Điểm nào sau đây thuộc miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l} 2x - 5y - 1 > 0\\ 2x + y + 5 > 0\\ x + y + 1 < 0 \end{array} \right.\)