YOMEDIA
NONE
  • Câu hỏi:

    Tìm khẳng định sai trong các khẳng định sau:

    • A. \(\int\limits_a^b {[f(x) + g(x)]\,dx}  = \int\limits_a^b {f(x)\,dx + \int\limits_a^b {g(x)\,dx} } \).
    • B. f(x) liên tục trên [a ; c] và a < b < c thì \(\int\limits_a^b {f(x)\,dx = \int\limits_a^c {f(x)\,dx + \int\limits_b^c {f(x)\,dx} } } \).
    • C. Nếu \(f(x) \ge 0\) trên đoạn [a ; b] thì \(\int\limits_a^b {f(x)\,dx \ge 0} \).
    • D. \(\int {\dfrac{{u'(x)dx}}{{u(x)}} = \ln \left| {u(x)} \right|}  + C\).

    Lời giải tham khảo:

    Đáp án đúng: B

    + Áp dụng tính chất của tích phân, ta có \(\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)\,} \right]dx}  = \int\limits_a^b {f\left( {x\,} \right)dx + \int\limits_a^b {g\left( x \right)\,dx} } \)

    \( \to \) Khẳng định A đúng.

    + Tính chất của tích phân: Nếu \(f\left( x \right) \ge 0\) trên đoạn \(\left[ {a;b} \right]\) thì \(\int\limits_a^b {f\left( x \right)\,dx \ge 0} \)

    \( \to \) Khẳng định C đúng.

    + Ta có: \(\int {\dfrac{{u'\left( x \right)dx}}{{u\left( x \right)}} = \int {\dfrac{{d\left( {u\left( x \right)} \right)}}{{u\left( x \right)}}} }  = \ln \left| {u\left( x \right)} \right| + C\)

    \( \to \) Khẳng định D đúng.

    \( \to \) Khẳng định B sai.

    ATNETWORK

Mã câu hỏi: 229551

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
NONE
ON