YOMEDIA
NONE
  • Câu hỏi:

    Đồ thị hàm số \(y = \dfrac{x}{{\sqrt {{x^2} - 1} }}\) có bao nhiêu đường tiệm cận?

    • A. 4
    • B. 3
    • C. 1
    • D. 2

    Lời giải tham khảo:

    Đáp án đúng: A

    TXĐ: \(D = \left( { - \infty ; - 1} \right) \cup \left( {1; + \infty } \right)\).

    Ta có

    \(\mathop {\lim }\limits_{x \to {\rm{\;}} + \infty } \dfrac{x}{{\sqrt {{x^2} - 1} }} = 1 \Rightarrow y = 1\) là tiệm cận  ngang của đồ thị hàm số.

    \(\mathop {\lim }\limits_{x \to {\rm{\;}} - \infty } \dfrac{x}{{\sqrt {{x^2} - 1} }} =  - 1 \Rightarrow y = {\rm{\;}} - 1\) là tiệm cận ngang của đồ thị hàm số.

    \(\mathop {\lim }\limits_{x \to \left( { - 1} \right)} \dfrac{x}{{\sqrt {{x^2} - 1} }} = \infty {\rm{\;}} \Rightarrow x = {\rm{\;}} - 1\) là tiệm cận đứng của đồ thị hàm số.

    \(\mathop {\lim }\limits_{x \to 1} \dfrac{x}{{\sqrt {{x^2} - 1} }} = \infty {\rm{\;}} \Rightarrow x = 1\) là tiệm cận đứng của đồ thị hàm số.

    Vậy đồ thị hàm số có tất cả 4 đường tiệm cận.

    Đáp án là A.

    ATNETWORK

Mã câu hỏi: 451589

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON