-
Câu hỏi:
Dãy số \({u_n} = \frac{{2n + 1}}{{n + 2}}\) có bao nhiêu số hạng là số nguyên.
- A. 1
- B. 12
- C. 2
- D. 0
Lời giải tham khảo:
Đáp án đúng: A
Ta có: \({u_n} = \frac{{2(n + 2) - 3}}{{n + 2}} = 2 - \frac{3}{{n + 2}}\)
\( \Rightarrow {u_n} \in \mathbb{Z} \Leftrightarrow \frac{3}{{n + 2}} \in \mathbb{Z} \Leftrightarrow 3 \vdots n + 2 \Leftrightarrow n = 1\)
Vậy dãy số có duy nhất một số hạng là số nguyên.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Tìm số hạng thứ 100 và 200 của dãy số \({u_n} = \frac{{2n + 1}}{{n + 2}}.\)
- Dãy số \({u_n} = \frac{{2n + 1}}{{n + 2}}\) có bao nhiêu số hạng là số nguyên.
- Dãy số \({u_n} = 2n + \sqrt {{n^2} + 4} \)có bao nhiêu số hạng làng số nguyên.
- Cho dãy số \(({u_n})\) được xác định bởi \({u_n} = {5.2^{n - 1}} - 3\) với \(\forall n \ge 2\).
- Cho dãy số \(({u_n})\) có 4 số hạng đầu là :\({u_1} = 1,{u_2} = 3,\) \({u_3} = 6,{u_4} = 10\).
- Cho dãy số \(\left( {{u_n}} \right):\left\{ \begin{array}{l}{u_1} = 2\\{u_{n + 1}} = n{u_n}\end{array} \right.,\forall n \ge 1\).
- Cho dãy số \({u_n} = \frac{{\sin \left( {\frac{{n\pi }}{3}} \right)}}{{n + 1}},\forall n \ge 1\).
- Cho dãy số (un), biết \({u_n} = \frac{1}{{n + 1}},\forall n \ge 1\). Ba số hạng đầu tiên của dãy số đó là:
- Cho dãy số (un), biết \(\left\{ \begin{array}{l}{u_1} = - 1\\{u_{n + 1}} = {u_n} + 3\end{array} \right.\) với \(n \ge 0\).
- Số hạng tổng quát của dãy số (un) viết dưới dạng khải triển \(\frac{1}{2};\frac{1}{4};\frac{1}{8};\frac{1}{{16}};...