-
Câu hỏi:
Cho dãy số \(({u_n})\) có 4 số hạng đầu là :\({u_1} = 1,{u_2} = 3,\) \({u_3} = 6,{u_4} = 10\). Hãy tìm một quy luật của dãy số trên.
- A. \({u_n} = \frac{{3n(n + 1)}}{2}\)
- B. \({u_n} = \frac{{n(n + 2)}}{2}\)
- C. \({u_n} = \frac{{n(n + 1)}}{3}\)
- D. \({u_n} = \frac{{n(n + 1)}}{2}\)
Lời giải tham khảo:
Đáp án đúng: D
Vì dãy số cho giá trị của 4 số hạng đầu ứng với 4 giá trị tương ứng của \(n = 1,2,3,4\) nên ta chỉ cần xác định một hàm số theo \(n\) mà ta phải tìm 4 ẩn là được. Chẳng hạn ta xét \({u_n} = a{n^3} + b{n^2} + cn + d\)
Theo bài ra ta có hệ phương trình :
\(\left\{ \begin{array}{l}a + b + c + d = 1\\8a + 4b + 2c + d = 3\\27a + 9b + 3c + d = 6\\64a + 16b + 4c + d = 10\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a + b + c + d = 1\\7a + 3b + c = 2\\26a + 8b + 2c = 5\\21a + 5b + c = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 0,b = c = \frac{1}{2}\\d = 0\end{array} \right.\)
Nên \({u_n} = \frac{{n(n + 1)}}{2}\) là một dãy thỏa đề bài.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Tìm số hạng thứ 100 và 200 của dãy số \({u_n} = \frac{{2n + 1}}{{n + 2}}.\)
- Dãy số \({u_n} = \frac{{2n + 1}}{{n + 2}}\) có bao nhiêu số hạng là số nguyên.
- Dãy số \({u_n} = 2n + \sqrt {{n^2} + 4} \)có bao nhiêu số hạng làng số nguyên.
- Cho dãy số \(({u_n})\) được xác định bởi \({u_n} = {5.2^{n - 1}} - 3\) với \(\forall n \ge 2\).
- Cho dãy số \(({u_n})\) có 4 số hạng đầu là :\({u_1} = 1,{u_2} = 3,\) \({u_3} = 6,{u_4} = 10\).
- Cho dãy số \(\left( {{u_n}} \right):\left\{ \begin{array}{l}{u_1} = 2\\{u_{n + 1}} = n{u_n}\end{array} \right.,\forall n \ge 1\).
- Cho dãy số \({u_n} = \frac{{\sin \left( {\frac{{n\pi }}{3}} \right)}}{{n + 1}},\forall n \ge 1\).
- Cho dãy số (un), biết \({u_n} = \frac{1}{{n + 1}},\forall n \ge 1\). Ba số hạng đầu tiên của dãy số đó là:
- Cho dãy số (un), biết \(\left\{ \begin{array}{l}{u_1} = - 1\\{u_{n + 1}} = {u_n} + 3\end{array} \right.\) với \(n \ge 0\).
- Số hạng tổng quát của dãy số (un) viết dưới dạng khải triển \(\frac{1}{2};\frac{1}{4};\frac{1}{8};\frac{1}{{16}};...