YOMEDIA
NONE
  • Câu hỏi:

    Có bao nhiêu số nguyên y sao cho tồn tại \(x\in \left( \frac{1}{3};4 \right)\) thỏa mãn \({{27}^{3{{x}^{2}}+xy}}=(1+xy){{27}^{12x}}\)?

    • A. 15
    • B. 14
    • C. 12
    • D. 27

    Lời giải tham khảo:

    Đáp án đúng: B

    Xét \({{27}^{3{{x}^{2}}+xy}} - (1+xy){{27}^{12x}}\)

    Áp dụng bất đẳng thức: \({a^x} \geqslant x(a - 1) + 1\), ta có

    \(f(x) \geqslant 26(3{x^2} + xy - 12x) + 1 - (1 + xy) = 78{x^2} + (25y - 312)x > 0,\forall y \geqslant 13\)

    Do đó y ≤ 12

    \(\begin{gathered}
      y = 0 =  > {27^{3{x^2} - 12}} = 1 <  =  > 3{x^2} - 12 = 0 <  =  > \left[ \begin{gathered}
      x = 0 \hfill \\
      x = 4 \hfill \\ 
    \end{gathered}  \right.(loai) \hfill \\
      y \leqslant  - 3 =  > xy <  - 1 =  > VP < 0(loai) \hfill \\ 
    \end{gathered} \)

    y=-1; y = -2 (thỏa mãn)

    Xét y > 0 có f(4) = 274y - (1 + 4y) ≥ 0, \(\forall \) y > 0 và \(f\left( {\frac{1}{3}} \right) = f(x) = {3^{y - 11}} - \frac{y}{3} - 1 < 0,\forall y \in {\text{\{ }}1;2;...;12\} \) 

    Do đó pt f(x) = 0 có nghiệm \(x \in \left( {\frac{1}{3};4} \right),\forall y \in {\text{\{ }}1;2;...;12\} \)  

    Vậy \(y \in {\text{\{  - 2; - 1;0;}}1;2;...;12\} \) 

    Chọn B

    ATNETWORK

Mã câu hỏi: 284614

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON