YOMEDIA
NONE
  • Câu hỏi:

    Cho số phức z thỏa mãn \(\left| z \right|=2\). Biết rằng tập hợp các điểm biểu diễn số phức \(w=3-2i+\left( 2-i \right)z\) là một đường tròn. Bán kính R của đường tròn đó bằng ?

    • A. 7
    • B. 20
    • C. \(2\sqrt{5}\).
    • D. \(\sqrt{7}\).

    Lời giải tham khảo:

    Đáp án đúng: C

    Ta có \(w=3-2i+\left( 2-i \right)z\)\(\Leftrightarrow z=\frac{w-3+2i}{2-i}\). Đặt \(w=x+yi\) \(\left( x,y\in \mathbb{R} \right)\).

    Khi đó \(z=\frac{x+yi-3+2i}{2-i}\)

    Ta có \(\left| z \right|=2\)\(\Rightarrow \left| \frac{x+yi-3+2i}{2-i} \right|=2\)\(\Leftrightarrow \frac{\left| x-3+\left( y+2 \right)i \right|}{\left| 2-i \right|}=2\)\(\Leftrightarrow \frac{\left| x-3+\left( y+2 \right)i \right|}{\left| 2-i \right|}=2\)

    \(\Leftrightarrow \left| x-3+\left( y+2 \right)i \right|=2\left| 2-i \right|\)\(\Leftrightarrow \left| x-3+\left( y+2 \right)i \right|=2\sqrt{5}\)\(\Leftrightarrow {{\left( x-3 \right)}^{2}}+{{\left( y+2 \right)}^{2}}={{\left( 2\sqrt{5} \right)}^{2}}\).

    Vậy tập hợp các điểm biểu diễn số phức \(w=3-2i+\left( 2-i \right)z\) là một đường tròn có bán kính \(R=2\sqrt{5}\)

    ATNETWORK

Mã câu hỏi: 152327

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON