YOMEDIA
NONE
  • Câu hỏi:

    Cho phương trình \(m{{.2}^{{{x}^{2}}-5x+6}}+{{2}^{1-{{x}^{2}}}}={{2.2}^{6-5x}}+m\) với \(m\) là tham số thực. Có tất cả bao nhiêu giá trị của \(m\) để phương trình có đúng ba nghiệm phân biệt.

    • A. 1
    • B. 2
    • C. 3
    • D. 4

    Lời giải tham khảo:

    Đáp án đúng: C

    Ta có \(m{{.2}^{{{x}^{2}}-5x+6}}+{{2}^{1-{{x}^{2}}}}={{2.2}^{6-5x}}+m\Leftrightarrow m{{.2}^{{{x}^{2}}-5x+6}}+{{2}^{1-{{x}^{2}}}}={{2}^{7-5x}}+m\)

    \(\Leftrightarrow m\left( {{2}^{{{x}^{2}}-5x+6}}-1 \right)+{{2}^{1-{{x}^{2}}}}\left( 1-{{2}^{{{x}^{2}}-5x+6}} \right)=0\Leftrightarrow \left( {{2}^{{{x}^{2}}-5x+6}}-1 \right)\left( m-{{2}^{1-{{x}^{2}}}} \right)=0.\)

    \( \Leftrightarrow \left[ \begin{array}{l} {2^{{x^2} - 5x + 6}} - 1 = 0\\ {2^{1 - {x^2}}} = m \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 2\\ x = 3\\ {2^{1 - {x^2}}} = m{\rm{ }}\left( * \right) \end{array} \right..\)

    Yêu cầu bài toán tương đương với

    TH1: Phương trình \(\left( * \right)\) có nghiệm duy nhất \(\left( x=0 \right)\), suy ra \(m=2.\)

    TH2: Phương trình \(\left( * \right)\) có hai nghiệm phân biệt, trong đó có một nghiệm là 2 và nghiệm còn lại khác 3\(\xrightarrow{{}}m={{2}^{-3}}.\)

    TH3: Phương trình \(\left( * \right)\) có hai nghiệm phân biệt, trong đó có một nghiệm là 3 và nghiệm còn lại khác \(2\xrightarrow{{}}m={{2}^{-8}}.\)

    Vậy có tất cả ba giá trị \(m\) thỏa mãn.

    ATNETWORK

Mã câu hỏi: 283641

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON