YOMEDIA
NONE
  • Câu hỏi:

    Cho hai số thực b và c \(\left( c>0 \right)\). Kí hiệu A, B là hai điểm của mặt phẳng phức biểu diễn hai nghiệm phức của phương trình \({{z}^{2}}+2bz+c=0\). Tìm điều kiện của b và c để tam giác OAB là tam giác vuông (O là gốc tọa độ).

    • A. \({{b}^{2}}=2c\) 
    • B. \(c=2{{b}^{2}}\) 
    • C. \(b=c\)
    • D. \({{b}^{2}}=c\) 

    Lời giải tham khảo:

    Đáp án đúng: B

    Hai nghiệm của phương trình \({{z}^{2}}+2bz+c=0\) là hai số phức liên hợp với nhau nên hai điểm A, B sẽ đối xứng nhau qua trục Ox.

    Do đó, tam giác OAB cân tại O.

    Vậy tam giác OAB vuông tại O.

    Để ba điểm O, A, B tạo thành tam giác thì hai điểm A, B không nằm trên trục tung, trục hoành. Tức là nếu đặt \(z=x+yi,\left( x,y\in \mathbb{R} \right)\) thì \(\left\{ \begin{array}{l} x \ne 0\\ y \ne 0 \end{array} \right.\left( * \right)\)

    Để phương trình \({{z}^{2}}+2bz+c=0\) có hai nghiệm thỏa mãn điều kiện \(\left( * \right)\) thì \({{b}^{2}}-c<0\).

    \({{z}^{2}}+2bz+c=0\Leftrightarrow {{\left( z+b \right)}^{2}}+c-{{b}^{2}}=0\)

    \(\Leftrightarrow {{\left( z+b \right)}^{2}}={{b}^{2}}-c\Leftrightarrow z=-b\pm i\sqrt{c-{{b}^{2}}}\)

    Đặt \(A\left( -b;\sqrt{c-{{b}^{2}}} \right)\) và \(B\left( -b;-\sqrt{c-{{b}^{2}}} \right)\)

    Theo đề ta có:

    \(\overrightarrow{OA}.\overrightarrow{OB}=0\Leftrightarrow {{b}^{2}}-c+{{b}^{2}}=0\Leftrightarrow 2{{b}^{2}}=c\)

    ATNETWORK

Mã câu hỏi: 283642

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON