-
Câu hỏi:
Cho hình chóp tứ giác \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh bằng \(a,\,SA \bot \left( {ABC} \right)\,,\,SA = 3a.\) Thể tích \(V\) của khối chóp \(S.ABCD\) là
- A. \(V = 2{a^3}\)
- B. \(V = 3{a^3}\)
- C. \(V = \frac{1}{3}{a^3}\)
- D. \(V = {a^3}\)
Lời giải tham khảo:
Đáp án đúng: D
Ta có: \({V_{SABCD}} = \frac{1}{3}SA.{S_{ABCD}} = \frac{1}{3}.{a^2}.3a = {a^3}.\)
Chọn D.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ dưới. Hỏi hàm số đó có bao nhiêu điểm cực trị?
- Cho tứ diện \(ABCD\) có \(AB,AC,AD\) đôi một vuông góc, \(AB = 4cm,AC = 5cm,AD = 3cm.\) Thể tích khối tứ diện \(ABCD\) bằng:
- Cho hàm số sau \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ dưới đây.
- Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác đều cạnh \(a,\) \(A'B\) tạo với mặt phẳng đáy góc \({60^ \circ }.\) Thể tích khối lăng trụ \(ABC.A'B'C'\) bằng
- Biết phương trình sau \({\log _5}\frac{{2\sqrt x + 1}}{x} = 2{\log _3}\left( {\frac{{\sqrt x }}{2} - \frac{1}{{2\sqrt x }}} \right)\) có một
- Cho biết số dương \(a\) và \(m,n \in \mathbb{R}\). Mệnh đề nào sau đây đúng?
- Biết khoảng cách từ \(A\) tới mặt phẳng \(\left( {SBC} \right)\) bằng \(\frac{{2a\sqrt {15} }}{5},\) tính theo \(a\) thể tích \(V\) của khối chóp \(S.ABCD.\)
- Gọi \(R,l,h\) lần lượt là bán kính đáy, độ dài đường sinh, chiều cao của hình nón \(\left( N \right).\) Diện tích xung quanh \({S_{xq}}\) của hình nón là
- Hãy tìm điểm cực đại \({x_0}\) của hàm số \(y = {x^3} - 3x + 1\).
- Biết rằng hàm số sau \(f\left( x \right) = {x^3} - 3{x^2} - 9x + 28\) đạt giá trị nhỏ nhất trên đoạn \(\left[ {0;4} \right]\) tại \
- Biết rằng hàm số \(f\left( x \right)\) có đạo hàm là \(f'\left( x \right)\) và hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ dưới. Khi đó mệnh đề nào sau đây sai?
- Cho khối lăng trụ \(ABC.A'B'C'\) có thể tích bằng \(72c{m^3}.\) Gọi \(M\) là trung điểm của đoạn thẳng\(BB'.\) Tính thể tích khối tứ diện \(ABCM.\)
- Cho đường cong trong hình dưới là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D d
- Con quạ thông minh mổ những viên bi đá hình cầu có bán kính \(0,6\,cm\) thả vào cốc nước để mực nước dâng lên. Để uống được nước thì con quạ cần thả vào cốc ít nhất bao nhiêu viên bi?
- đồ thị hàm số \(y\, = \,\frac{{2x\, + \,1}}{{x\, - \,1}}\) \(\left( C \right)\) tại hai điểm phân biệt \(A,B\) sao cho trọng tâm tam giác \(OAB\) thuộc đường thẳng \(\Delta \,:\,x\, - \,2y\, - \,2\, = \,0\), với \(O\) là gốc tọa độ. Tính \(a + 2b.\)
- Phương trình sau \(\left( {{2^x} - 5} \right)\left( {{{\log }_2}x - 3} \right) = 0\) có hai nghiệm \({x_1},{x_2}\) (với \({x_1} < {x_2}\)).
- Cho \(f(1) = 1,f(m + n) = f(m) + f(n) + mn\) với mọi \(m,n \in {N^*}\). Tính giá trị của biểu thức \(T = \log \left[ {\frac{{f(96) - f(69) - 241}}{2}} \right]\).
- Tính giá trị của biểu thức \(P = \frac{{{{\left( {4 + 2\sqrt 3 } \right)}^{2018}}.{{\left( {1 - \sqrt 3 } \right)}^{2017}}}}{{{{\left( {1 + \sqrt 3 } \right)}^{2019}}}}\).
- Một hình nón có đỉnh là \(O\) và có đáy là hình tròn \(\left( {O';r} \right).\) Gọi \({S_1}\) là diện tích xung quanh của hình trụ và \({S_2}\) là diện tích xung quanh của hình nón. Tính tỉ số \(\frac{{{S_1}}}{{{S_2}}}.\)
- Hỏi sau một năm, số tiền tiết kiệm của anh Nam gần nhất với số nào sau đây?
- Biết rằng đồ thị hàm số \(y = {x^3} - 4{x^2} + 5x - 1\) cắt đồ thị hàm số \(y = 1\) tại hai điểm phân biệt \(A\) và \(B\). Tính độ dài đoạn thẳng \(AB.\)
- Cho khối chóp có thể tích bằng \(32c{m^3}\) và diện tích đáy bằng \(16c{m^2}.\) Chiều cao của khối chóp đó là
- Giải phương trình sau \({\log _3}\left( {x - 1} \right) = 2.\)
- Cho hình chóp \(S.ABC\) có \(SA = 2a,SB = 3a,SC = 4a\) và \(\widehat {ASB} = \widehat {BSC} = {60^ \circ },\widehat {ASC} = {90^ \circ }.\) Tính thể tích \(V\) của khối chóp \(S.ABC.\)
- Phương trình tiếp tuyến của đồ thị hàm số \(y = f(x) = {({x^2} - 1)^2}\) tại điểm \(M(2;9)\) là
- Cho hình nón có chiều cao bằng \(8cm,\) bán kính đáy bằng \(6cm.\) Diện tích toàn phần của hình nón đã cho bằng
- Cho hàm số \(y = \frac{{x + 2}}{{2x + 3}}\) có đồ thị \((C)\). Đường thẳng \(d\) có phương trình \(y = ax + b\) là tiếp tuyến của \((C)\), biết \(d\) cắt trục hoành tại \(A\)và cắt trục tung tại \(B\)sao cho tam giác \(OAB\)cân tại \(O\), với \(O\) là gốc tọa độ. Tính \(a + b\).
- Cho biết \(a > 0\) và \(a \ne 1\). Tìm mệnh đề đúng trong các mệnh đề sau.
- Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ dưới. Xét hàm số \(g\left( x \right) = f\left( {2{x^3} + x - 1} \right) + m.\) Tìm \(m\) để \(\mathop {\max }\limits_{\left[ {0;1} \right]} g\left( x \right) = - 10.\)
- Có tất cả bao nhiêu giá trị nguyên của tham số \(m\)thuộc đoạn \(\left[ { - 2018;2019} \right]\) để hàm số \(y = m{x^4} + \left( {m + 1} \right){x^2} + 1\)có đúng một điểm cực đại?
- Tìm tất cả các giá trị thực của tham số \(m\) sao cho phương trình \(f\left( x \right) = m\) có đúng hai nghiệm.
- Hàm số \(f(x) = {2^{2x}}\) có đạo hàm
- Cho hình chóp S.ABC có đáy ABC là tam giác với \(AB = 2cm,AC = 3cm,\;\angle BAC = {60^0},SA \bot \left( {ABC} \right).\)Gọi \({B_1},{C_1}\) lần lượt là hình chiếu vuông góc của A lên SB, SC. Tính thể tích khối cầu đi qua năm điểm \(A,B,C,{B_1},{C_1}.\)
- Cho hàm số \(f\left( x \right) = \frac{{x - {m^2}}}{{x + 8}}\) với \(m\) là tham số thực. Giả sử \({m_0}\) là giá trị dương của tham số \(m\) để hàm số có giá trị nhỏ nhất trên đoạn \(\left[ {0;3} \right]\) bằng \( - 3\). Giá trị \({m_0}\) thuộc khoảng nào trong các khoảng cho dưới đây?
- Để kịp thời đưa công trình vào sử dụng, công ty xây dựng quyết định từ tháng thứ \(2\), mỗi tháng tăng \(5\% \) khối lượng công việc so với tháng kề trước. Hỏi công trình sẽ hoàn thành ở tháng thứ mấy sau khi khởi công?
- Gọi \({V_1}\) là thể tích của khối đa diện chứa đỉnh \(S\) và \({V_2}\) là thể tích khối đa diện còn lại. Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}.\)
- Cho hình chóp tứ giác đều có tất cả các cạnh bằng \(2a.\) Bán kính mặt cầu ngoại tiếp hình chóp đã cho bằng \(\frac{{a\sqrt 6 }}{2}.\)
- Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:Mệnh đề nào sau đây đúng?
- Tìm tập xác định của hàm số sau \(y = \frac{1}{{1 - \ln x}}\).
- Cho các dạng đồ thị (I), (II), (III) như hình dưới đây:Đồ thị hàm số \(y = {x^3} + b{x^2} - x + d{\rm{ }}\left( {b,d \in \mathbb{R}} \right)\) có thể là dạng nào trong các dạng trên?
- Mặt cầu có bán kính \(a\) thì có diện tích xung quanh bằng
- Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \({\log _{\sqrt 2 }}(x - 1) = {\log _2}(mx - 8)\) có hai nghiệm thực phân biệt?
- Cho hàm số \(y = a{x^4} + b{x^2} + c{\rm{ }}\left( {a \ne 0} \right)\) có bảng biến thiên dưới đây: Tính \(P = a - 2b + 3c.\)
- Cho hình chóp \(S.ABCD\) có đáy là hình chữ nhật, \(SA\) vuông góc với mặt phẳng \(\left( {ABCD} \right).\) Tâm mặt cầu ngoại tiếp hình chóp \(S.ABCD\) là điểm \(I\) với
- Cho khối chóp tứ giác đều \(S.ABCD\) có thể tích bằng \({a^3}\) và đáy \(ABCD\) là hình vuông cạnh \(a.\) Tính \(\cos \alpha \) với \(\alpha \) là góc giữa mặt bên và mặt đáy.
- Cho khối trụ có thể tích bằng \(45\pi \,c{m^3},\) chiều cao bằng \(5cm.\) Tính bán kính \(R\) của khối trụ đã cho.
- Cho hình chóp tứ giác \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh bằng \(a,\,SA \bot \left( {ABC} \right)\,,\,SA = 3a.\) Thể tích \(V\) của khối chóp \(S.ABCD\) là
- Giá trị nhỏ nhất của hàm số \(y = x{e^{x + 1}}\) trên \(\left[ { - 2;0} \right]\) bằng
- Cho cấp số nhân \(\left( {{u_n}} \right)\) có công bội dương và \({u_2} = \frac{1}{4},\,{u_4} = 4.\) Giá trị của \({u_1}\) là
- Tập hợp \(S\) tất cả các giá trị của m đề phương trình \(f\left( x \right) = m\) có đúng ba nghiệm thực là