YOMEDIA
NONE
  • Câu hỏi:

    Cho hình chóp S.ABC có SA vuông góc với mặt phẳng đáy. Gọi M là trung điểm của BC và H là trung điểm của AM. Biết \(HB=HC,\widehat{HBC}={{30}^{0}};\) góc giữa mặt phẳng \(\left( SHC \right)\) và mặt phẳng \(\left( HBC \right)\) bằng \({{60}^{0}}.\) Tính cô-sin của góc giữa đường thẳng BC và mặt phẳng \(\left( SHC \right)\).

    • A. 0,5
    • B. \(\frac{{\sqrt 3 }}{2}\)
    • C. \(\frac{{\sqrt {13} }}{4}\)
    • D. \(\frac{{\sqrt {3} }}{4}\)

    Lời giải tham khảo:

    Đáp án đúng: C

    HB=HC nên tam giác HBC cân tại H, suy ra \(HM\bot BC\).

    Trong mặt phẳng \(\left( ABC \right)\) dựng \(AK\bot HC\Rightarrow HC\bot \left( SAK \right).\)

    Mà góc giữa mặt phẳng \(\left( SHC \right)\) và \(\left( ABC \right)\) bằng \({{60}^{0}}\) nên \(\widehat{SKA}={{60}^{0}}.\)

    Giả sử BC=a.

    \(\Rightarrow BM=\frac{a}{2}\Rightarrow AH=HM=BM.\tan {{30}^{0}}=\frac{a\sqrt{3}}{6}\)

    \(\Rightarrow AK=AH.\sin {{60}^{0}}=\frac{a}{4}\Rightarrow SA=AK.\tan {{60}^{0}}=\frac{a\sqrt{3}}{4}.\)

    Trang bị hệ trục tọa độ Axyz với \(A\left( 0;0;0 \right),S\left( 0;0;\frac{\sqrt{3}}{4} \right),H\left( \frac{\sqrt{3}}{6};0;0 \right),C\left( \frac{\sqrt{3}}{3};\frac{1}{2};0 \right),B\left( \frac{\sqrt{3}}{3};\frac{-1}{2};0 \right).\)

    \(\Rightarrow \overrightarrow{SH}=\left( \frac{\sqrt{3}}{6};0;\frac{-\sqrt{3}}{4} \right),\overrightarrow{HC}=\left( \frac{\sqrt{3}}{6};\frac{1}{2};0 \right),\overrightarrow{BC}=\left( 0;1;0 \right).\)

    Từ đó suy ra mặt phẳng \(\left( SHC \right)\) nhận \(\overrightarrow{n}=\left( 3\sqrt{3};-3;2\sqrt{3} \right)\) là véc-tơ pháp tuyến.

    Ta có \(\sin \left( BC,\left( SHC \right) \right)=\left| \cos \left( \overrightarrow{n},\overrightarrow{BC} \right) \right|=\left| \frac{-3}{\sqrt{48}} \right|=\frac{\sqrt{3}}{4}\Rightarrow \cos \left( BC,\left( SHC \right) \right)=\frac{\sqrt{13}}{4}.\)

    ATNETWORK

Mã câu hỏi: 272602

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON