YOMEDIA
NONE
  • Câu hỏi:

    Cho hàm số \(y = {x^3} - 3m{x^2} + 4{m^3}.\) Với giá trị nào của tham số \(m\) để đồ thị hàm số có hai điểm cực trị \(A,\;B\) sao cho \(AB = \sqrt {20} ?\)

    • A. \(\left[ \begin{array}{l}m = 1\\m = 2\end{array} \right.\) 
    • B. \(m =  \pm 2\) 
    • C. \(m =  \pm 1\) 
    • D. \(m = 1\) 

    Lời giải tham khảo:

    Đáp án đúng: C

    Ta có \(y' = 3{x^2} - 6mx = 0 \Leftrightarrow 3x\left( {x - 2m} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2m\end{array} \right.\)

    Để hàm số đã cho có 2 điểm cực trị thì phương trình \(y' = 0\) có 2 nghiệm phân biệt \( \Leftrightarrow 2m \ne 0 \Leftrightarrow m \ne 0\).

    Với \(x = 0 \Rightarrow y = 4{m^3} \Rightarrow A\left( {0;4{m^3}} \right)\).

    Với \(x = 2m \Rightarrow y = 8{m^3} - 3m.4{m^2} + 4{m^3} = 0 \Rightarrow B\left( {2m;0} \right)\).

    Khi đó ta có \(AB = \sqrt {4{m^2} + 16{m^6}}  = \sqrt {20}  \Leftrightarrow 4{m^2} + 16{m^6} = 20 \)

    \(\Leftrightarrow \left[ \begin{array}{l}{m^2} = 1\\{m^2} = 0\;\;\left( {ktm} \right)\end{array} \right. \Leftrightarrow m =  \pm 1\;\left( {tm} \right).\)

    Vậy \(m =  \pm 1\).

    Chọn C.

    ATNETWORK

Mã câu hỏi: 382653

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON