-
Câu hỏi:
Cho đường tròn (O;12) có đường kính CD. Dẫy MN qua trung điểm I của OC sao cho góc NID bằng 30 độ. MN=?
- A. \(3\sqrt{3}\)
- B. \(2\sqrt{3}\)
- C. \(3\)
- D. \(2\)
Lời giải tham khảo:
Đáp án đúng: A
\(OE=OI.sin30^{\circ}=6.\frac{1}{2}=3\Rightarrow ME=\sqrt{OM^2-OE^2}=\sqrt{6^2-3^2}=3\sqrt{3}\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Cho đường tròn (O;R) và 2 dây AB và CD bằng nhau và vuông góc với nhau tại I. Giả sử IA=2, IB=4. Khoảng cách từ tâm O tới AB là d và tới CD là d' Giá trị của d và d'
- Cho đường tròn (O;R) đường kính AB. M là một điểm nằm giữa A và B. Qua M vẽ dây CD vuông góc với ABBiết AM=4, R=6,5
- Cho đường tròn (O;12) có đường kính CD. Dẫy MN qua trung điểm I của OC sao cho góc NID bằng 30 độ. MN=?
- Cho đường tròn (O;R) và một dây CD. Từ O kẻ tia vuông góc với CD tại M, cắt (O) tại H. Biết CD=16, MH=4. R=?
- Cho (O;25), dây AB=40. Vẽ dây CD song song với AB và có khoảng cách tới AB là 22. Độ dài dây CD là?