Bài giảng sẽ hướng dẫn các em cách tính thể tích của một khối cầu bằng cách tìm bán kính của khối cầu đó cùng một số bài tập liên quan
-
Video liên quan
-
Nội dung
-
Bài 1: Tìm khoảng đơn điệu của hàm số
Bài 1: Tìm khoảng đơn điệu của hàm số
Bài giảng sẽ giúp các em nắm được kiến thức cơ bản về cách tìm khoảng đơn điệu của hàm số như: Định nghĩa Điều kiện đủ để hàm số đơn điệu Các bước tìm khoảng đơn điệu của hàm số00:55:29 5168 TS. Phạm Sỹ Nam
-
Bài 2: Tìm tham số để hàm số đơn điệu trên một miền
Bài 2: Tìm tham số để hàm số đơn điệu trên một miền
Bài giảng sẽ giúp các em nắm được kiến thức cơ bản về cách tìm tham số để hàm số đơn điệu trên một miền như: Công thức tính. Điều kiện đủ để hàm số đơn điệu trên một miền.00:28:42 1080 TS. Phạm Sỹ Nam
-
Bài 3: Ứng dụng tính đơn điệu giải phương trình
Bài 3: Ứng dụng tính đơn điệu giải phương trình
Bài giảng sẽ giúp các em nắm kỹ hơn về lý thuyết và một số ví dụ cụ thể về ứng dụng tính đơn điệu giải phương trình.00:32:49 1080 TS. Phạm Sỹ Nam
-
Bài 4: Ứng dụng tính đơn điệu giải bất phương trình
Bài 4: Ứng dụng tính đơn điệu giải bất phương trình
Bài giảng Ứng dụng tính đơn điệu giải bất phương trình sẽ giúp các em nắm được lý thuyết và bài tập để các em củng cố kiến thức.00:32:29 870 TS. Phạm Sỹ Nam
-
Bài 5: Ứng dụng tính đơn điệu giải hệ phương trình
Bài 5: Ứng dụng tính đơn điệu giải hệ phương trình
Bài giảng Ứng dụng tính đơn điệu giải hệ phương trình sẽ giúp các em nắm kỹ hơn cách giải hệ phương trình, cách tìm tính nghịch biến, đồng biến về tính đơn điệu của hệ phương trình.00:29:14 946 TS. Phạm Sỹ Nam
-
Bài 6: Ứng dụng tính đơn điệu chứng minh bất đẳng thức
Bài 6: Ứng dụng tính đơn điệu chứng minh bất đẳng thức
Bài giảng ứng dụng tính đơn điệu chứng minh bất đẳng thức gồm có 2 phần nội dung chính: Lý thuyết Các ví dụ cụ thể nhằm giúp các em chứng minh được đồng biến và nghịch biến.00:43:58 1076 TS. Phạm Sỹ Nam
I. Lý thuyết
Cho khối cầu bán kính R
\(V=\frac{4}{3}\pi .R^3\)
II. Bài tập
Ví dụ 1: Cho hình lập phương ABCD.A'B'C'D'. Tính thể tích khối cầu.
a) Ngoại tiếp hình lập phương
b) Nội tiếp hình lập phương.
Giải
a) Bán kính khối cầu ngoại tiếp hình lập phương là
\(R=\frac{1}{2}AC'=\frac{1}{2}\sqrt{a^2+a^2+a^2}=\frac{a\sqrt{3}}{2}\)
\(V_1=\frac{4}{3}\pi R^3=\frac{4}{3}\pi .\frac{a^3.3\sqrt{3}}{8}=\frac{a^3\pi .\sqrt{3}}{2}\)(đvtt)
b)
Khối cầu nội tiếp hình lập phương có bán kính
\(2r=a\Leftrightarrow r=\frac{a}{2}\)
Thể tích khối cầu
\(V_2=\frac{4}{3}\pi .r^3=\frac{4}{3}\pi .\frac{a^3}{8}=\frac{\pi a^3}{6}\) (đvtt)
Ví dụ 2: Thể tích của khối cầu sẽ thay đổi như thế nào nếu.
a) Tăng bán kính lên k lần.
b) Giảm bán kính k lần.
Giảm
a)
\(R_1=k.R_2\)
\(\frac{V_1}{V_2}=\frac{\frac{4}{3}\pi R^3_1}{\frac{4}{3}.\pi .R^3_2}= \left ( \frac{R_1}{R_2} \right )^3=k^3\)
Nếu tăng bán kính lên k lần thì thể tích khối cầu tăng gấp k3 lần.
b)
\(R_1=\frac{1}{k}.R_2\)
\(\frac{V_1}{V_2}=\frac{\frac{4}{3}\pi .R^3_1}{\frac{4}{3}\pi .R^3_2}= \left ( \frac{R_1}{R_2} \right )^3=\frac{1}{k^3}\)
Nếu giảm bán kính k lần thì thể tích khối cầu giảm k3 lần.
Ví dụ 3:
Cho hình chóp S.ABC có \(SA\perp (ABC), AB=a, AC=b,\widehat{BAC}=60^0\). H, K l3 h/c của A trên SB, SC.
a) CMR: 5 điểm A, B, C, H, K cùng thuộc một mặt cầu.
b) Tính thể tích khối cầu đó.
Giải
a)
Gọi M, N lần lượt là trung điểm AB, AC
Kẻ đường trung trực Mx của cạnh AB trong (ABC)
Ta có (SAB) \(\perp\) (ABC), có giao tuyến là AB nên Mx \(\perp\) (SAB) hay Mx \(\perp\) (AHB)
Vậy Mx là trục đường tròn ngoại tiếp tam giác AHB
Tương tự kẻ Ny là đường trung trực của cạnh AC trong tam giác (ABC)
ta có Ny là trục đường tròn ngoại tiếp tam giác AKC
Trong (ABC)
\(Mx\cap Ny=I\)
I là tâm đường tròn ngoại tiếp tam giác ABC
\(\left.\begin{matrix} I\in Mx\Rightarrow IA=IH=IB\\ I\in Ny\Rightarrow IA=IK=IC \end{matrix}\right\}\)
5 điểm A, B, C, H, K cùng thuộc mặt cầu tâm I
b)
R = IA
Trong tam giác ABC
\(BC^2=AB^2+AC^2-2AB.AC.cos60^0=a^2+b^2-ab\)
\(R=\frac{BC}{2 sin\widehat{A}}=\frac{\sqrt{a^2+b^2-ab}}{2.\frac{\sqrt{3}}{2}} =\sqrt{\frac{a^2+b^2-ab}{3}}\)
\(V=\frac{4}{3}.\pi .R^3=\frac{4}{3}.\pi \frac{a^2+b^2-ab}{3}.\sqrt{\frac{a^2+b^2-ab}{3}}\)