YOMEDIA
NONE

Giải câu hỏi 2 trang 42 SGK Vật Lý 10 Kết nối tri thức - KNTT

Giải câu hỏi 2 trang 42 SGK Vật Lý 10 Kết nối tri thức

1. Biết độ dịch chuyển trong chuyển động thẳng biến đổi đều có độ lớn bằng diện tích giới hạn đồ thị (v – t) trong thời gian t của chuyển động. Hãy chứng minh rằng công thức tính độ lớn của độ dịch chuyển trong chuyển động thẳng biến đổi đều là:

\(d = {v_0}t + \frac{1}{2}a{t^2}\)     (9.4)

2. Từ công thức (9.2) và (9.4) chứng minh rằng:

\({v^2} - v_0^2 = 2.a.d\)                (9.5)

ATNETWORK

Hướng dẫn giải chi tiết bài 2

Hướng dẫn giải

Dựa vào các kiến thức đã học và kiến thức Toán học để tiến hành phân tích và trả lời.

Lời giải chi tiết

1. Độ dịch chuyển có độ lớn bằng diện tích của hình thang vuông có đường cao là t và các đáy có độ lớn v0, v.

Diện tích hình thang: \(d = {s_{ht}} = \frac{{(v + {v_0}).t}}{2} = \frac{1}{2}{v_0}t + \frac{1}{2}vt\)     (1)

Lại có: \(a = \frac{{v - {v_0}}}{t} \Rightarrow v = at + {v_0}\)      (2)

Thay (2) vào (1) ta được:

\(d = \frac{1}{2}{v_0}t + \frac{1}{2}(at + {v_0})t = \frac{1}{2}{v_0}t + \frac{1}{2}a{t^2} + \frac{1}{2}{v_0}t\)

\( \Rightarrow d = {v_0}t + \frac{1}{2}a{t^2}\)      (đpcm)

2. Ta có: \({v_t} = {v_0} + at\)   (9.2)

\(d = {v_0}t + \frac{1}{2}a{t^2}\)     (9.4)

+ Bình phương 2 vế của (9.2) ta được:

\({v^2} = v_0^2 + 2{v_0}.at + {a^2}{t^2} = v_0^2 + a(2{v_0}t + a{t^2})\)          (1)

+ Từ (9.4) ta có:

\(2{\rm{d}} = 2{v_0}t + a{t^2}\)       (2)

Thay (2) vào (1) ta được:

\({v^2} = v_0^2 + a.2{\rm{d}} \Leftrightarrow {v^2} - v_0^2 = 2{\rm{a}}.d\)   (đpcm)

-- Mod Vật Lý 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải câu hỏi 2 trang 42 SGK Vật Lý 10 Kết nối tri thức - KNTT HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON