YOMEDIA
NONE

Luyện tập 2 trang 87 SGK Toán 8 Kết nối tri thức Tập 2 - KNTT

Luyện tập 2 trang 87 SGK Toán 8 Kết nối tri thức Tập 2

Cho ΔA'B'C' ΔABC. Trên tia đối của các tia CB, C'B' lần lượt lấy các điểm M, M' sao cho \(\frac{{MC}}{{MB}} = \frac{{M'C'}}{{M'B'}}\). Chứng minh rằng ΔA'B'M' ΔABM?

ATNETWORK

Hướng dẫn giải chi tiết Luyện tập 2

Phương pháp giải:

Áp đụng định lí trường hợp đồng dạng canh – góc – cạnh để chứng minh \(\Delta A'B'M' \backsim \Delta ABM\).

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}\frac{{MC}}{{MB}} = \frac{{M'C'}}{{M'B'}}\\ \Rightarrow \frac{{MB - BC}}{{MB}} = \frac{{M'B' - B'C'}}{{M'B'}}\\ \Rightarrow 1 - \frac{{BC}}{{MB}} = 1 - \frac{{B'C'}}{{M'B'}}\\ \Rightarrow \frac{{BC}}{{MB}} = \frac{{B'C'}}{{M'B'}}\\ \Rightarrow \frac{{M'B'}}{{MB}} = \frac{{B'C'}}{{BC}}(1)\end{array}\)

Vì ΔA'B'C' ∽ ΔABC suy ra:

\(\begin{array}{l}\widehat {B'} = \widehat B\\\frac{{A'B'}}{{AB}} = \frac{{B'C'}}{{BC}}(2)\end{array}\)

Từ (1) và (2) suy ra:

\(\frac{{M'B'}}{{MB}} = \frac{{A'B'}}{{AB}}\)

Xét tam giác ABM và tam giác A”B”M’ có:

\(\begin{array}{l}\widehat {B'} = \widehat B\\\frac{{M'B'}}{{MB}} = \frac{{A'B'}}{{AB}}\end{array}\)

Suy ra \(\Delta A'B'M' \backsim \Delta ABM\).

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Luyện tập 2 trang 87 SGK Toán 8 Kết nối tri thức Tập 2 - KNTT HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON