YOMEDIA
NONE

Bài tập 31 trang 83 SBT Toán 8 Tập 1

Giải bài 31 tr 83 sách BT Toán lớp 8 Tập 1

Hình thang cân ABCD có O là giao điểm của hai đường thẳng chứa cạnh bên AD, BC và E là giao điểm của hai đường chéo. Chứng minh rằng OE là đường trung trực của hai đáy.

ATNETWORK

Hướng dẫn giải chi tiết

Hướng dẫn giải

Ta sử dụng kiến thức:

+) Trong hình thang cân, hai cạnh bên bằng nhau.

+) Trong hình thang cân, hai đường chéo bằng nhau.

+) Trong tam giác cân, đường trung trực ứng với cạnh đáy đi qua đỉnh của tam giác đó.

Lời giải chi tiết

\(\eqalign{
& \widehat {ADC} = \widehat {BCD}\,\,\,\,(gt) \cr 
& \Rightarrow \widehat {ODC} = \widehat {OCD} \cr} \) 

⇒ ∆ OCD cân tại O

⇒ OC = OD

⇒ OA + AD = OB + BC

Mà AD = BC (tính chất hình thang cân)

⇒ OA = OB

Xét ∆ ADC và ∆ BCD :

AD = BC (chứng minh trên)

AC = BD (tính chất hình thang cân)

CD cạnh chung

Do đó: ∆ ADC = ∆ BCD (c.c.c)

\( \Rightarrow {\widehat D_1} = {\widehat C_1}\)

⇒ ∆ EDC cân tại E

⇒ EC = ED nên E thuộc đường trung trực của CD

OC = OD nên O thuộc đường trung trực của CD

E≢ O. Vậy OE là đường trung trực của CD.

BD = AC (chứng minh trên)

⇒ EB + ED = EA + EC mà ED = EC

⇒ EB = EA nên E thuộc đường trung trực AB

E≢ O. Vậy OE là đường trung trực của AB.

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 31 trang 83 SBT Toán 8 Tập 1 HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON