YOMEDIA
NONE

Chứng minh BDEC là hình thang cân biết tam giác ABCD cân tại A

1. Cho tam giác ABCD cân tại A . Trên các cạnh bên AB , AC lấy theo thứ tự các điểm D và E sao cho AD=AE.

a) Chứng minh rằng BDEC là hình thang cân .

b) Tính các góc của hình thang cân đó , biết rằng góc A = 50 độ

2. Cho tam giác ABCD cân tại A , các đường phân giác BD, CE ( D thuộc AC , E thuộc AB ) .

Chứng minh rằng BEDC là hình thang cân có đáy nhỏ = cạnh bên .

3 . Hình thang ABCD ( AB // CD ) có góc ACD = góc BDC . Chứng minh rằng ABCD là hình thang cân

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • 1. Ta có:

    AD = AE => Tam giác ADE cân tại A

    D1 = E1 = \(\dfrac{180-A}{2}\)

    Góc B = Góc C =\(\dfrac{180-A}{2}\)

    => Góc B = góc D1 ( = \(\dfrac{180-A}{2}\))

    Mà 2 góc này ở vị trí đồng vị

    Nên DE // CB

    Ta có : Góc B= góc C; DE // CB => BDEC là ht cân

    b) Góc B= góc C= \(\dfrac{180-A}{2}=\dfrac{180-50}{2}=\dfrac{130}{2}=65\)

    Hình thang cân BDEC có DE // CB:

    D2 + B = 180 ( trong cùng phía)

    D2 = 180 - 65 = 115

    Góc D2= Góc E2 = 115

      bởi nguyễn văn thanh 01/06/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON