YOMEDIA
NONE

Bài tập 16 trang 52 SBT Toán 8 Tập 2

Giải bài 16 tr 52 sách BT Toán lớp 8 Tập 2

Cho \(m < n\), chứng tỏ :

a) \(4m + 1 < 4n + 5;\)

b) \(3 – 5m > 1 – 5n.\)

ATNETWORK

Hướng dẫn giải chi tiết

Hướng dẫn giải

Áp dụng các tính chất liên hệ giữa thứ tự và phép nhân với số dương và số âm, liên hệ giữa thứ tự và phép cộng; tính chất bắc cầu.

Lời giải chi tiết

a)  Vì \(m < n \Rightarrow 4m < 4n\) 

\(\, \Rightarrow 4m + 1 < 4n + 1\)      \((1)\)

Vì \(1 < 5 \Rightarrow 4n + 1 < 4n + 5\)      \((2)\)

Theo tính chất bắc cầu, từ \((1)\) và \((2)\) suy ra: \(4m + 1 < 4n + 5.\)

b) Vì \(m < n \Rightarrow  - 5m >  - 5n\)

\(\, \Rightarrow 1 - 5m > 1 - 5n\)   \((3)\)

Vì \(3 > 1 \Rightarrow 3 - 5m > 1 - 5m\)  \((4)\)

Theo tính chất bắc cầu, từ \((3)\) và \((4)\) suy ra: \(3 - 5m > 1 - 5n\)

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 16 trang 52 SBT Toán 8 Tập 2 HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON