YOMEDIA
NONE

Bài tập 156 trang 99 SBT Toán 8 Tập 1

Giải bài 156 tr 99 sách BT Toán lớp 8 Tập 1

Cho hình vuông ABCD. Vẽ điểm E trong hình vuông sao cho\(\widehat {FAD} = \widehat {FDA} = {15^0}\).

a. Vẽ điểm F trong hình vuông sao cho\(\widehat {FAD} = \widehat {FDA} = {15^0}\). Chứng minh rằng tam giác DEF là tam giác đều.

b. Chứng minh rằng tam giác ABE là tam giác đều.

ATNETWORK

Hướng dẫn giải chi tiết

Hướng dẫn giải

Vận dụng tính chất của hai tam giác bằng nhau và tính chất về các cạnh và góc của hình vuông. 

Lời giải chi tiết

a. Xét ∆ EDC và ∆ FDA :

\(\widehat {EDC} = \widehat {FAD} = {15^0}\)

DC = AD (gt)

\(\widehat {ECD} = \widehat {FDA} = {15^0}\)

Do đó: ∆ EDC = ∆ FDA (g.c.g)

 ⇒ DE = DF

⇒ ∆ DEF cân tại D

Ta lại có:

\(\eqalign{  & \widehat {ADC} = \widehat {FDA} + \widehat {FDE} + \widehat {EDC}  \cr &  \Rightarrow \widehat {FDE} = \widehat {ADC} - \left( {\widehat {FDA} + \widehat {EDC}} \right) \cr & = {90^0} - \left( {{{15}^0} + {{15}^0}} \right) = {60^0} \cr} \)

Vậy ∆ DEF đều.

b. Xét ∆ ADE và ∆ BCE:

ED = EC (vì ∆ EDC cân tại E)

\(\widehat {ADE} = \widehat {BCE} = {75^0}\)

AD = BC (gt)

Do đó: ∆ ADE = ∆ BCE (c.g.c)

⇒ AE = BE (1)

Trong ∆ AFD ta có:

\(\eqalign{  & \widehat {AFD} = {180^0} - \left( {\widehat {FAD} + \widehat {FDA}} \right) \cr & = {180^0} - \left( {{{15}^0} + {{15}^0}} \right) = {150^0}  \cr  & \widehat {AFD} + \widehat {DFE} + \widehat {AFE} = {360^0}  \cr  &  \Rightarrow \widehat {AFE} = {360^0} - \left( {\widehat {AFD} + \widehat {DFE}} \right) \cr & = {360^0} - \left( {{{150}^0} + {{60}^0}} \right) = {150^0} \cr} \)

Xét ∆ AFD và ∆ AEF:

AF cạnh chung

\(\widehat {AFD} = \widehat {AFE} = {150^0}\)

DF = EF (vì ∆ DFE đều)

Do đó: ∆ AFD = ∆ AEF (c.g.c)

⇒ AE = AD

AD = AB (gt)

Suy ra: AE = AB (2)

Từ (1) và (2) suy ra: AE = AB = BE. Vậy ∆ AEB đều.

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 156 trang 99 SBT Toán 8 Tập 1 HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON