YOMEDIA
NONE

Giải bài 6 trang 87 SBT Toán 7 Chân trời sáng tạo tập 1 - CTST

Giải bài 6 trang 87 SBT Toán 7 Chân trời sáng tạo tập 1

Cho hình thoi ABCD, biết AC là phân giác \(\widehat {BAD}\). Hãy chứng tỏ CA là phân giác \(\widehat {BCD}\).

ATNETWORK

Hướng dẫn giải chi tiết Bài 6

Phương pháp giải

Sử dụng tính chất của hình thoi có các cặp đối diện song song và bằng nhau. Sau khi đã chọn được cặp cạnh song song, ta sử dụng tính chất 2 góc so le trong bằng nhau để suy ra \(\widehat {DCA}\)=\(\widehat {ACB}\) nên CA là phân giác của \(\widehat {BCD}\)

Lời giải chi tiết

Vì ABCD là hình thoi nên AB // CD và AD // BC.

Do AB // CD nên \(\widehat {BAC}\)=\(\widehat {DCA}\) (hai góc so le trong)

Do AD // BC nên \(\widehat {CAD}\)=\(\widehat {ACB}\) (hai góc so le trong)

Mà AC là tia phân giác của \(\widehat {BAD}\) nên \(\widehat {BAC}\)=\(\widehat {CAD}\)

Suy ra \(\widehat {DCA}\)=\(\widehat {ACB}\)

Mà tia CA nằm giữa 2 tia CB và CD

Do đó CA là tia phân giác của \(\widehat {BCD}\)

-- Mod Toán 7 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 6 trang 87 SBT Toán 7 Chân trời sáng tạo tập 1 - CTST HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON