YOMEDIA
NONE

Toán 6 Kết nối tri thức Bài 24: So sánh phân số. Hỗn số dương


Học247 mời các em tham khảo bài học So sánh phân số. Hỗn số dương bên dưới đây, thông qua tài liệu này các em sẽ hệ thống lại toàn bộ kiến thức đã học, bên cạnh đó các em còn nắm được phương pháp giải các bài tập và vận dụng vào giải các bài tập tương tự. Chúc các em có một tiết học thật hay và thật vui khi đến lớp!

ATNETWORK
YOMEDIA
 

Tóm tắt lý thuyết

1.1. Quy đồng mẫu nhiều phân số

Muốn quy đồng mẫu nhiều phân số với mẫu dương ta làm như sau:

- Tìm một bội chung của các mẫu (thường là BCNN) để làm mẫu chung

- Tìm thừa số phụ của mỗi mẫu (bằng cách chia mẫu chung cho từng mẫu).

- Nhân tử và mẫu của mỗi phân số với thừa số phụ tương ứng

Ví dụ: Quy đồng mẫu các phân số: \(\dfrac{9}{10}\),  \(\dfrac{4}{15}\) và  \(\dfrac{7}{6}\)

-Tìm BCNN: BCNN (10,15,6)=30

- Tìm thừa số phụ:

30:10=3, 30:15=2, 30:6=5

- Nhân tử và mẫu với thừa số phụ tương ứng

\(\dfrac{9}{10}=\dfrac{9.3}{10.3}=\dfrac{27}{30}\),

\(\dfrac{4}{15}=\dfrac{4.2}{15.2}=\dfrac{18}{30}\); 

\(\dfrac{7}{6}=\dfrac{7.5}{6.5}=\dfrac{35}{30}\)

1.2. So sánh hai phân số

- Trong hai phân số bất kì có cùng một mẫu dương, phân số nào có tử lớn hơn thì lớn hơn.

Ví dụ: So sánh các cặp phân số sau

a) \(\dfrac{-3}{4} ;\dfrac{-7}{4}\)

b) \(\dfrac{5}{-8} ;\dfrac{-7}{8}\)

Giải

a)  Vì \(-3>-7\Rightarrow \dfrac{-3}{4} >\dfrac{-7}{4}\)

b) Vì 2 phân số chưa có cùng mẫu dương nên ta sẽ biến đổi:

\(\dfrac{5}{-8}=\dfrac{-5}{8}\) và ta sẽ so sánh \(\dfrac{-5}{8};\dfrac{-7}{8}\)

Vì \(-5>-7\Rightarrow \dfrac{5}{-8}=\dfrac{-5}{8}>\dfrac{-7}{8}\)

- Muốn so sánh 2 phân số không cùng mẫu, ta viết chúng dưới dạng hai phân số có cùng một mẫu dương rồi so sánh các tử với nhau. Phân số nào có tử lớn hơn thì lớn hơn.

Ví dụ: So sánh 2 phân số sau: \(\dfrac{2}{-3}\) và \(\dfrac{-5}{9}\)

Giải

- Đưa về mẫu dương: \(\dfrac{2}{-3}=\dfrac{-2}{3}\)

- Quy đồng mẫu các phân số: \(\dfrac{-2}{3}\) và \(\dfrac{-5}{9 }\)

\(\dfrac{-2}{3}=\dfrac{(-2).3}{3.3}=\dfrac{-6}{9}\); giữ nguyên \(\dfrac{-5}{9}\)

 Vì \(-6<-5\Rightarrow \dfrac{-6}{9}<\dfrac{-5}{9}\Rightarrow \dfrac{-2}{3}<\dfrac{-5}{9}\Rightarrow \dfrac{2}{-3}<\dfrac{-5}{9}\)

1.3. Hỗn số dương

- Cho a và b là hai số nguyên dương, a > b, a không chia hết cho b. Nếu a chia cho b được thương là q và số dư là r, thì ta viết \(\frac{a}{b} = q\frac{r}{b}\) và gọi là \(q\frac{r}{b}\) là hỗn số. Đọc là "q, r phần b" 

- Với hỗn số \(q\frac{r}{b}\) người ta gọi q là phần số nguyên và \(\frac{r}{b}\) là phần phân số của hỗn số.

Ví dụ: \(3\frac{4}{7}\) là một hỗn số

Bài tập minh họa

Câu 1: Quy đồng mẫu các phân số sau: \(\dfrac{3}{4};\dfrac{7}{6};\dfrac{5}{8}\)

Hướng dẫn giải

Ta có: BCNN (4; 6; 8)=24

Nên

\(\dfrac{3}{4}=\dfrac{3.6}{4.6}=\dfrac{18}{24}\)

\(\dfrac{7}{6}=\dfrac{7.4}{6.4}=\dfrac{28}{24}\)

\(\dfrac{5}{8}=\dfrac{5.3}{8.3}=\dfrac{15}{24}\)

Câu 2: So sánh các phân số:

a)\(\displaystyle \,\,{{ - 11} \over {12}};\,\,\, \,\,\,{{17} \over { - 18}}\,\,\,\,\)

b) \(\displaystyle \,\,{{ - 14} \over {21}};\,\,\, \,\,\,{{ - 60} \over { - 72}}\)

Hướng dẫn giải

a) Đổi \(\dfrac{{17}}{{ - 18}} = \dfrac{{ - 17}}{{18}}\)

Ta có:

\(12 = 2^2.3\)

\(18 = 2. 3^2\)

Suy ra \(BCNN(12,18) = 2^2.3^2= 36\)

\(\eqalign{& {{ - 11} \over {12}} = {{ - 11.3} \over {12.3}} = {{ - 33} \over {36}}  \cr & {{17} \over { - 18}} ={{-17} \over { 18}}= {{-17.2} \over { 18.2}} = {{ - 34} \over {36}}  \cr & {{ - 33} \over {36}} > {{ - 34} \over {36}}  \cr &  \Rightarrow {{ - 11} \over {12}} > {{17} \over { - 18}} \cr} \)

b) \(\dfrac{{ - 14}}{{21}} = \dfrac{{ - 14:7}}{{21:7}} = \dfrac{{ - 2}}{3}\)

\(\dfrac{{ - 60}}{{ - 72}} = \dfrac{{ - 60:\left( { - 12} \right)}}{{ - 72:\left( { - 12} \right)}} = \dfrac{5}{6}\)

Ta đi quy đồng hai phân số: \(\dfrac{{ - 2}}{3};\dfrac{5}{6}\)

Mẫu số chung là \(BCNN(3, 6) =6\)

Quy đồng: \(\dfrac{{ - 2}}{3} = \dfrac{{ - 2.2}}{{3.2}} = \dfrac{{ - 4}}{6};\dfrac{5}{6} = \dfrac{5}{6}\)

So sánh: Vì \(\dfrac{{ - 4}}{6} < \dfrac{5}{6}\) nên \(\dfrac{{ - 14}}{{21}} < \dfrac{{ - 60}}{{ - 72}}\)

Câu 3: Viết phân số \(\frac{{11}}{2}\) dưới dạng hỗn số và cho biết phần số nguyên, phần phân số

Hướng dẫn giải

Ta có: \(\frac{{11}}{2} = 5\frac{1}{2}\)

Số nguyên: 2

Phần phân số: \(\frac{1}{2}\)

Luyện tập Bài 24 Chương 6 Toán 6 KNTT

Qua bài giảng này giúp các em học được:

- Biết quy đồng được mẫu nhiều phân số.

- So sánh được hai phân số cùng mẫu, hai phân số không cùng mẫu.

- Đổi được hỗn số ra phân số và ngược lại

- Thực hiện được các bước so sánh và tính toán với hỗn số

- Vận dụng được vào thực tiễn

3.1. Bài tập tự luận về So sánh phân số. Hỗn số dương

Câu 1: Quy đồng mẫu các phân số sau: \(\dfrac{7}{3};\dfrac{5}{6};\dfrac{3}{4}\)

Câu 2: Rút gọn 2 biểu thức và quy đồng:

\(\dfrac{2^{5}.7+2^{5}}{2^{5}.5^{2}-2^{5}.3}\) và \(\dfrac{3^{4}.5-3^{6}}{3^{4}.13+3^{4}}\)

Câu 3: Tìm các phân số có mẫu là 12 lớn hơn \(\dfrac{-2}{3}\) và nhỏ hơn \(\dfrac{-1}{4}\)

Câu 4: Sắp xếp các phân số sau theo thứ tự tăng dần: \(\dfrac{-5}{6};\dfrac{7}{8};\dfrac{7}{24};\dfrac{16}{17}\)

3.2. Bài tập trắc nghiệm về So sánh phân số. Hỗn số dương

Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 6 Kết nối tri thức Chương 6 Bài 24 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.

Câu 4-10: Mời các em đăng nhập xem tiếp nội dung và thi thử Online để củng cố kiến thức và nắm vững hơn về bài học này nhé!

3.3. Bài tập SGK về So sánh phân số. Hỗn số dương

Các em có thể xem thêm phần hướng dẫn Giải bài tập Toán 6 Kết nối tri thức Chương 6 Bài 24 để giúp các em nắm vững bài học và các phương pháp giải bài tập.

Hoạt động 1 trang 9 SGK Toán 6 Kết nối tri thức tập 2 - KNTT

Hoạt động 2 trang 9 SGK Toán 6 Kết nối tri thức tập 2 - KNTT

Luyện tập 1 trang 10 SGK Toán 6 Kết nối tri thức tập 2 - KNTT

Hoạt động 3 trang 10 SGK Toán 6 Kết nối tri thức tập 2 - KNTT

Luyện tập 2 trang 10 SGK Toán 6 Kết nối tri thức tập 2 - KNTT

Hoạt động 4 trang 10 SGK Toán 6 Kết nối tri thức tập 2 - KNTT

Luyện tập 3 trang 11 SGK Toán 6 Kết nối tri thức tập 2 - KNTT

Thử thách nhỏ trang 11 SGK Toán 6 Kết nối tri thức tập 2 - KNTT

Hoạt động 5 trang 11 SGK Toán 6 Kết nối tri thức tập 2 - KNTT

Hoạt động 6 trang 11 SGK Toán 6 Kết nối tri thức tập 2 - KNTT

Giải câu hỏi trang 12 SGK Toán 6 Kết nối tri thức tập 2 - KNTT

Giải bài 6.8 trang 12 SGK Toán 6 Kết nối tri thức tập 2 - KNTT

Giải bài 6.9 trang 12 SGK Toán 6 Kết nối tri thức tập 2 - KNTT

Giải bài 6.10 trang 12 SGK Toán 6 Kết nối tri thức tập 2 - KNTT

Giải bài 6.11 trang 12 SGK Toán 6 Kết nối tri thức tập 2 - KNTT

Giải bài 6.12 trang 12 SGK Toán 6 Kết nối tri thức tập 2 - KNTT

Giải bài 6.13 trang 12 SGK Toán 6 Kết nối tri thức tập 2 - KNTT

Giải bài 6.11 trang 8 SBT Toán 6 Kết nối tri thức tập 2 - KNTT

Giải bài 6.12 trang 8 SBT Toán 6 Kết nối tri thức tập 2 - KNTT

Giải bài 6.13 trang 8 SBT Toán 6 Kết nối tri thức tập 2 - KNTT

Giải bài 6.14 trang 8 SBT Toán 6 Kết nối tri thức tập 2 - KNTT

Giải bài 6.15 trang 9 SBT Toán 6 Kết nối tri thức tập 2 - KNTT

Giải bài 6.16 trang 9 SBT Toán 6 Kết nối tri thức tập 2 - KNTT

Giải bài 6.17 trang 9 SBT Toán 6 Kết nối tri thức tập 2 - KNTT

Giải bài 6.18 trang 9 SBT Toán 6 Kết nối tri thức tập 2 - KNTT

Giải bài 6.19 trang 9 SBT Toán 6 Kết nối tri thức tập 2 - KNTT

Giải bài 6.20 trang 9 SBT Toán 6 Kết nối tri thức tập 2 - KNTT

Hỏi đáp Bài 24 Chương 6 Toán 6 KNTT

Trong quá trình học tập nếu có thắc mắc hay cần trợ giúp gì thì các em hãy comment ở mục Hỏi đáp, Cộng đồng Toán HOC247 sẽ hỗ trợ cho các em một cách nhanh chóng!

Chúc các em học tập tốt và luôn đạt thành tích cao trong học tập!

-- Mod Toán Học 6 HỌC247

NONE
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON