Thực hành 8 trang 98 SGK Toán 11 Chân trời sáng tạo tập 1
Cho tứ diện \(SABC\). Gọi \(H,K\) lần lượt là hai điểm trên hai cạnh \(SA\) và \(SC\left( {H \ne S,A;K \ne S,C} \right)\) sao cho \(HK\) không song song với \(AC\). Gọi \(I\) là trung điểm của \(BC\) (Hình 38).
a) Tìm giao điểm của đường thẳng \(HK\) và mặt phẳng \(\left( {ABC} \right)\).
b) Tìm giao tuyến của các mặt phẳng \(\left( {SAI} \right)\) và \(\left( {ABK} \right)\); \(\left( {SAI} \right)\) và \(\left( {BCH} \right)\).
Hướng dẫn giải chi tiết Thực hành 8
Phương pháp giải:
‒ Để tìm giao điểm của đường thẳng và mặt phẳng, ta tìm giao điểm của đường thẳng đó với một đường thẳng trong mặt phẳng.
‒ Để tìm giao tuyến của hai mặt phẳng, ta tìm hai điểm chung phân biệt của hai mặt phẳng đó.
Lời giải chi tiết:
a) Gọi \(D = HK \cap AC\). Ta có:
\(\left. \begin{array}{l}D \in AC \subset \left( {ABC} \right)\\D \in HK\end{array} \right\} \Rightarrow M = HK \cap \left( {ABC} \right)\)
b) Gọi \(E = SI \cap BK\). Ta có:
\(\left. \begin{array}{l}E \in SI \subset \left( {SAI} \right)\\E \in BK \subset \left( {ABK} \right)\end{array} \right\} \Rightarrow E \in \left( {SAI} \right) \cap \left( {ABK} \right)\)
Mà \(A \in \left( {SAI} \right) \cap \left( {ABK} \right)\).
Vậy giao tuyến của hai mặt phẳng \(\left( {SAI} \right)\) và \(\left( {ABK} \right)\) là đường thẳng \(AE\).
Ta có:
\(\begin{array}{l}\left. \begin{array}{l}I \in \left( {SAI} \right)\\I \in BC \subset \left( {BCH} \right)\end{array} \right\} \Rightarrow I \in \left( {SAI} \right) \cap \left( {BCH} \right)\\\left. \begin{array}{l}H \in SA \subset \left( {SAI} \right)\\H \in \left( {BCH} \right)\end{array} \right\} \Rightarrow H \in \left( {SAI} \right) \cap \left( {BCH} \right)\end{array}\)
Vậy giao tuyến của hai mặt phẳng \(\left( {SAI} \right)\) và \(\left( {BCH} \right)\) là đường thẳng \(HI\).
-- Mod Toán 11 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Hoạt động khám phá 10 trang 96 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Hoạt động khám phá 11 trang 96 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Vận dụng 4 trang 98 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Vận dụng 5 trang 98 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 1 trang 99 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 2 trang 99 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 3 trang 99 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 4 trang 99 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 5 trang 99 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Bài tập 1 trang 112 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 2 trang 112 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 3 trang 112 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 4 trang 112 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST