YOMEDIA
NONE

Giải Bài 1 trang 99 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST

Giải Bài 1 trang 99 SGK Toán 11 Chân trời sáng tạo tập 1

Cho hình chóp \(S.ABCD\), gọi \(O\) là giao điểm của \(AC\) và \(B{\rm{D}}\). Lấy \(M,N\) lần lượt thuộc các cạnh \(SA,SC\).

a) Chứng minh đường thẳng \(MN\) nằm trong mặt phẳng \(\left( {SAC} \right)\).

b) Chứng minh \(O\) là điểm chung của hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SB{\rm{D}}} \right)\).

ATNETWORK

Hướng dẫn giải chi tiết Bài 1

Phương pháp giải

‒ Để chứng minh đường thẳng nằm trong mặt phẳng, ta chứng minh đường thẳng đó có hai điểm phân biệt nằm trong mặt phẳng.

‒ Để chứng minh một điểm nằm trong mặt phẳng, ta chứng minh điểm đó nằm trên một đường thẳng nằm trong mặt phẳng.

 

Lời giải chi tiết

 

a) Ta có:

\(\left. \begin{array}{l}M \in SA \subset \left( {SAC} \right)\\N \in SC \subset \left( {SAC} \right)\end{array} \right\} \Rightarrow MN \subset \left( {SAC} \right)\)

 

b) Ta có:

\(\left. \begin{array}{l}O \in AC \subset \left( {SAC} \right)\\O \in B{\rm{D}} \subset \left( {SB{\rm{D}}} \right)\end{array} \right\} \Rightarrow O \in \left( {SAC} \right) \cap \left( {SB{\rm{D}}} \right)\)

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Giải Bài 1 trang 99 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON