Giải Bài 1 trang 99 SGK Toán 11 Chân trời sáng tạo tập 1
Cho hình chóp \(S.ABCD\), gọi \(O\) là giao điểm của \(AC\) và \(B{\rm{D}}\). Lấy \(M,N\) lần lượt thuộc các cạnh \(SA,SC\).
a) Chứng minh đường thẳng \(MN\) nằm trong mặt phẳng \(\left( {SAC} \right)\).
b) Chứng minh \(O\) là điểm chung của hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SB{\rm{D}}} \right)\).
Hướng dẫn giải chi tiết Bài 1
Phương pháp giải
‒ Để chứng minh đường thẳng nằm trong mặt phẳng, ta chứng minh đường thẳng đó có hai điểm phân biệt nằm trong mặt phẳng.
‒ Để chứng minh một điểm nằm trong mặt phẳng, ta chứng minh điểm đó nằm trên một đường thẳng nằm trong mặt phẳng.
Lời giải chi tiết
a) Ta có:
\(\left. \begin{array}{l}M \in SA \subset \left( {SAC} \right)\\N \in SC \subset \left( {SAC} \right)\end{array} \right\} \Rightarrow MN \subset \left( {SAC} \right)\)
b) Ta có:
\(\left. \begin{array}{l}O \in AC \subset \left( {SAC} \right)\\O \in B{\rm{D}} \subset \left( {SB{\rm{D}}} \right)\end{array} \right\} \Rightarrow O \in \left( {SAC} \right) \cap \left( {SB{\rm{D}}} \right)\)
-- Mod Toán 11 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Vận dụng 4 trang 98 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Vận dụng 5 trang 98 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 2 trang 99 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 3 trang 99 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 4 trang 99 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 5 trang 99 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Bài tập 1 trang 112 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 2 trang 112 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 3 trang 112 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 4 trang 112 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST