YOMEDIA
NONE

Thực hành 1 trang 75 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Thực hành 1 trang 75 SGK Toán 11 Chân trời sáng tạo tập 2

Cho hình chóp \(S.ABCD\) với đáy \(ABCD\) là hình vuông cạnh \(a\). Cho biết \(SA = a\) và \(SA\) vuông góc với \(\left( {ABCD} \right)\).

a) Tính khoảng cách từ điểm \(B\) đến \(\left( {SAD} \right)\).

b) Tính khoảng cách từ điểm \(A\) đến cạnh \(SC\).

ATNETWORK

Hướng dẫn giải chi tiết Thực hành 1

Phương pháp giải:

‒ Cách tính khoảng cách từ một điểm đến một mặt phẳng: Tính khoảng cách từ điểm đó đến hình chiếu của nó lên mặt phẳng.

‒ Cách tính khoảng cách từ một điểm đến một đường thẳng: Tính khoảng cách từ điểm đó đến hình chiếu của nó lên đường thẳng.

 

Lời giải chi tiết:

a) Ta có:

\(\begin{array}{l}\left. \begin{array}{l}SA \bot \left( {ABCD} \right) \Rightarrow SA \bot AB\\AB \bot A{\rm{D}}\end{array} \right\} \Rightarrow AB \bot \left( {SA{\rm{D}}} \right)\\ \Rightarrow d\left( {B,\left( {SA{\rm{D}}} \right)} \right) = AB = a\end{array}\)

 

b) Kẻ \(AH \bot SC \Rightarrow d\left( {A,SC} \right) = AH\)

Tam giác \(ABC\) vuông tại \(B\)\( \Rightarrow AC = \sqrt {A{B^2} + B{C^2}} = a\sqrt 2 \)

Tam giác \(SAC\) vuông tại \(A\)\( \Rightarrow SC = \sqrt {S{A^2} + A{C^2}} = a\sqrt 3 \)

Tam giác \(SAC\) vuông tại \(A\) có đường cao \(AH\)\( \Rightarrow AH = \frac{{SA.AC}}{{SC}} = \frac{{a\sqrt 6 }}{3}\)

Vậy \(d\left( {A,SC} \right) = \frac{{a\sqrt 6 }}{3}\).

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Thực hành 1 trang 75 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

Bài tập SGK khác

Hoạt động khởi động trang 74 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Hoạt động khám phá 1 trang 74 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Vận dụng 1 trang 75 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Hoạt động khám phá 2 trang 76 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Thực hành 2 trang 77 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Hoạt động khám phá 3 trang 77 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Thực hành 3 trang 78 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Vận dụng 2 trang 78 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Hoạt động khám phá 4 trang 78 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Hoạt động khám phá 5 trang 79 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Thực hành 4 trang 81 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Vận dụng 3 trang 81 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Giải Bài 1 trang 81 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Giải Bài 2 trang 81 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Giải Bài 3 trang 81 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Giải Bài 4 trang 81 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Giải Bài 5 trang 81 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Giải Bài 6 trang 82 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Giải Bài 7 trang 82 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Giải Bài 8 trang 82 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Bài tập 1 trang 68 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST

Bài tập 2 trang 68 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST

Bài tập 3 trang 68 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST

Bài tập 4 trang 68 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST

Bài tập 5 trang 68 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST

Bài tập 6 trang 68 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST

Bài tập 7 trang 68 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST

Bài tập 8 trang 68 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST

Bài tập 9 trang 68 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST

Bài tập 10 trang 68 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON