YOMEDIA
NONE

Thực hành 2 trang 77 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Thực hành 2 trang 77 SGK Toán 11 Chân trời sáng tạo tập 2

Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a\). Tính khoảng cách:

a) Giữa hai mặt phẳng \(\left( {ACD'} \right)\) và \(\left( {A'C'B} \right)\).

b) Giữa đường thẳng \(AB\) và \(\left( {A'B'C'D'} \right)\).

ATNETWORK

Hướng dẫn giải chi tiết Thực hành 2

Phương pháp giải:

‒ Cách tính góc giữa hai mặt phẳng: Góc giữa hai mặt phẳng \(\left( \alpha \right)\) và \(\left( \beta \right)\) là góc giữa hai đường thẳng lần lượt vuông góc với \(\left( \alpha \right)\) và \(\left( \beta \right)\).

‒ Cách tính góc giữa đường thẳng và mặt phẳng: ta tính góc giữa đường thẳng và hình chiếu của nó lên mặt phẳng.

 

Lời giải chi tiết:

a) \(AA'C'C\) là hình chữ nhật

\(\left. \begin{array}{l} \Rightarrow AC\parallel A'C'\\A'C' \subset \left( {A'C'B} \right)\end{array} \right\} \Rightarrow AC\parallel \left( {A'C'B} \right)\)

\(ABC'D'\) là hình bình hành

\(\left. \begin{array}{l} \Rightarrow AD'\parallel BC'\\BC' \subset \left( {A'C'B} \right)\end{array} \right\} \Rightarrow AD'\parallel \left( {A'C'B} \right)\)

Ta có:

\(\left. \begin{array}{l}AC\parallel \left( {A'C'B} \right)\\AD'\parallel \left( {A'C'B} \right)\\AC,A{\rm{D}}' \subset \left( {AC{\rm{D}}'} \right)\end{array} \right\} \Rightarrow \left( {AC{\rm{D}}'} \right)\parallel \left( {A'C'B} \right) \Rightarrow \left( {\left( {AC{\rm{D}}'} \right),\left( {A'C'B} \right)} \right) = {0^ \circ }\)

 

b) Ta có:

\(\left. \begin{array}{l}AB\parallel A'B'\\A'B' \subset \left( {A'B'C'D'} \right)\end{array} \right\} \Rightarrow AB\parallel \left( {A'B'C'D'} \right) \Rightarrow \left( {AB,\left( {A'B'C'D'} \right)} \right) = {0^ \circ }\)

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Thực hành 2 trang 77 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

Bài tập SGK khác

Vận dụng 1 trang 75 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Hoạt động khám phá 2 trang 76 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Hoạt động khám phá 3 trang 77 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Thực hành 3 trang 78 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Vận dụng 2 trang 78 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Hoạt động khám phá 4 trang 78 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Hoạt động khám phá 5 trang 79 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Thực hành 4 trang 81 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Vận dụng 3 trang 81 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Giải Bài 1 trang 81 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Giải Bài 2 trang 81 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Giải Bài 3 trang 81 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Giải Bài 4 trang 81 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Giải Bài 5 trang 81 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Giải Bài 6 trang 82 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Giải Bài 7 trang 82 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Giải Bài 8 trang 82 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Bài tập 1 trang 68 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST

Bài tập 2 trang 68 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST

Bài tập 3 trang 68 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST

Bài tập 4 trang 68 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST

Bài tập 5 trang 68 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST

Bài tập 6 trang 68 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST

Bài tập 7 trang 68 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST

Bài tập 8 trang 68 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST

Bài tập 9 trang 68 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST

Bài tập 10 trang 68 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON