YOMEDIA
NONE

Giải Bài 6 trang 82 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Giải Bài 6 trang 82 SGK Toán 11 Chân trời sáng tạo tập 2

Cho hình hộp đứng \(ABCD.A'B'C'D'\) có cạnh bên \(AA' = 2a\) và đáy \(ABCD\) là hình thoi có \(AB = a\) và \(AC = a\sqrt 3 \).

a) Tính khoảng cách giữa hai đường thẳng \(B{\rm{D}}\) và \(AA'\).

b) Tính thể tích của khối hộp.

ATNETWORK

Hướng dẫn giải chi tiết Bài 6

Phương pháp giải

‒ Cách tính khoảng cách giữa hai đường thẳng chéo nhau:

Cách 1: Dựng đường vuông góc chung.

Cách 2: Tính khoảng cách từ đường thẳng này đến một mặt phẳng song song với đường thẳng đó và chứa đường thẳng còn lại.

‒ Công thức tính thể tích khối lăng trụ: \(V = Sh\).

 

Lời giải chi tiết

a) Gọi \(O = AC \cap B{\rm{D}}\)

\(ABCD\) là hình thoi \( \Rightarrow AC \bot B{\rm{D}} \Rightarrow AO \bot B{\rm{D}}\)

\(AA' \bot \left( {ABCD} \right) \Rightarrow AA' \bot AO\)

\( \Rightarrow d\left( {B{\rm{D}},AA'} \right) = AO = \frac{1}{2}AC = \frac{{a\sqrt 3 }}{2}\)

 

b) Tam giác \(OAB\) vuông tại \(O\)

\(\begin{array}{l} \Rightarrow BO = \sqrt {A{B^2} - A{O^2}} = \frac{a}{2} \Rightarrow B{\rm{D}} = 2BO = a\\{S_{ABC{\rm{D}}}} = \frac{1}{2}AC.B{\rm{D}} = \frac{{{a^2}\sqrt 3 }}{2}\\{V_{ABC.A'B'C'}} = {S_{ABC{\rm{D}}}}.AA' = \frac{{3{a^3}}}{4}\end{array}\)

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Giải Bài 6 trang 82 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON