YOMEDIA
NONE

Bài tập 5 trang 68 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST

Bài tập 5 trang 68 SBT Toán 11 Tập 2 Chân trời sáng tạo

Cho hình chóp S.ABC có tam giác vuông cân tại B, AC = a2 , mặt phẳng (SAC) vuông góc với mặt đáy (ABC). Các mặt bên (SAB), (SBC) tạo với mặt đáy các góc bằng nhau và bằng 60°. Tính theo a thể tích V của khối chóp S.ABC?

ATNETWORK

Hướng dẫn giải chi tiết Bài tập 5

Cho hình chóp S.ABC có tam giác vuông cân tại B, AC =  , mặt phẳng (SAC)

Ta có: (SAC) ⊥ (ABC) và (SAC) (ABC) = AC.

Trong mặt phẳng (SAC), vẽ SH ⊥ AC (H AC) thì SH ⊥ (ABC).

Gọi I, K lần lượt là hình chiếu vuông góc của H lên cạnh AB và BC.

Khi đó, ta có SAB,  ABC=SIH^,  SBC,  ABC=SKH^.

SIH^=SKH^=60° nên HI = HK.

Suy ra tử giác BIHK là hình vuông nên H là trung điểm cạnh AC.

Khi đó tử giác BIHK là hình vuông cạnh a2 .

SH = HI . tan 60° = a32.

VS.BCD=13.SBCD.SA=13.a22.a3=a236.

Vậy thể tích V của khối chóp S.ABC là a236.

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 5 trang 68 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
NONE
ON