Thực hành 1 trang 39 SGK Toán 11 Chân trời sáng tạo tập 2
Tính đạo hàm của hảm số \(f\left( x \right) = {x^3}\).
Hướng dẫn giải chi tiết Thực hành 1
Phương pháp giải:
Tính giới hạn \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\).
Lời giải chi tiết:
Với bất kì \({x_0} \in \mathbb{R}\), ta có:
\(\begin{array}{*{20}{l}}
\begin{array}{l}
f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x^3} - x_0^3}}{{x - {x_0}}}\\
= \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {x - {x_0}} \right)\left( {{x^2} + x.{x_0} + x_0^2} \right)}}{{x - {x_0}}}
\end{array}&{}\\
\begin{array}{l}
= \mathop {\lim }\limits_{x \to {x_0}} \left( {{x^2} + x.{x_0} + x_0^2} \right)\\
= x_0^2 + {x_0}.{x_0} + x_0^2 = 3x_0^2
\end{array}&{}
\end{array}\)
Vậy \(f'\left( x \right) = {\left( {{x^3}} \right)^\prime } = 3{{\rm{x}}^2}\) trên \(\mathbb{R}\).
-- Mod Toán 11 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Hoạt động khởi động trang 37 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Hoạt động khám phá 1 trang 37 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Vận dụng trang 39 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Hoạt động khám phá 2 trang 39 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Thực hành 2 trang 40 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Hoạt động khám phá 3 trang 40 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Thực hành 3 trang 41 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Giải Bài 1 trang 41 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Giải Bài 2 trang 41 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Giải Bài 3 trang 42 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Giải Bài 4 trang 42 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Giải Bài 5 trang 42 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Giải Bài 6 trang 42 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Bài tập 1 trang 38 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST
Bài tập 2 trang 38 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST
Bài tập 3 trang 39 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST
Bài tập 4 trang 39 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST
Bài tập 5 trang 39 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST