Giải Bài 1 trang 41 SGK Toán 11 Chân trời sáng tạo tập 2
Dùng định nghĩa để tính đạo hàm của các hàm số sau:
a) \(f\left( x \right) = - {x^2}\);
b) \(f\left( x \right) = {x^3} - 2x\);
c) \(f\left( x \right) = \frac{4}{x}\).
Hướng dẫn giải chi tiết Bài 1
Phương pháp giải
Tính giới hạn \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\).
Lời giải chi tiết
a) Với bất kì \({x_0} \in \mathbb{R}\), ta có:
\(f'\left( {{x_0}} \right)\)\( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( { - {x^2}} \right) - \left( { - x_0^2} \right)}}{{x - {x_0}}}\)
\( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{ - \left( {{x^2} - x_0^2} \right)}}{{x - {x_0}}} \)\(= \mathop {\lim }\limits_{x \to {x_0}} \frac{{ - \left( {x - {x_0}} \right)\left( {x + {x_0}} \right)}}{{x - {x_0}}}\)
\( = \mathop {\lim }\limits_{x \to {x_0}} \left( { - x - {x_0}} \right)\)\( = - {x_0} - {x_0} = - 2{{\rm{x}}_0}\)
Vậy \(f'\left( x \right) = {\left( { - {x^2}} \right)^\prime } = - 2x\) trên \(\mathbb{R}\).
b) Với bất kì \({x_0} \in \mathbb{R}\), ta có:
\(f'\left( {{x_0}} \right) \)\(= \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {{x^3} - 2{\rm{x}}} \right) - \left( {x_0^3 - 2{{\rm{x}}_0}} \right)}}{{x - {x_0}}}\)
\( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x^3} - 2{\rm{x}} - x_0^3 + 2{{\rm{x}}_0}}}{{x - {x_0}}} \)\(= \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {{x^3} - x_0^3} \right) - 2\left( {x - {x_0}} \right)}}{{x - {x_0}}}\)
\( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {x - {x_0}} \right)\left( {{x^2} + x.{x_0} + x_0^2} \right) - 2\left( {x - {x_0}} \right)}}{{x - {x_0}}} \)\(= \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {x - {x_0}} \right)\left( {{x^2} + x.{x_0} + x_0^2 - 2} \right)}}{{x - {x_0}}}\)
\( = \mathop {\lim }\limits_{x \to {x_0}} \left( {{x^2} + x.{x_0} + x_0^2 - 2} \right) \)\(= x_0^2 + {x_0}.{x_0} + x_0^2 - 2 = 3{\rm{x}}_0^2 - 2\)
Vậy \(f'\left( x \right)\)\( = {\left( {{x^3} - 2{\rm{x}}} \right)^\prime }\)\( = 3{{\rm{x}}^2} - 2\) trên \(\mathbb{R}\).
c) Với bất kì \({x_0} \ne 0\), ta có:
\(f'\left( {{x_0}} \right) \)\(= \mathop {\lim }\limits_{x \to {x_0}} \frac{{\frac{4}{x} - \frac{4}{{{x_0}}}}}{{x - {x_0}}} \)\(= \mathop {\lim }\limits_{x \to {x_0}} \frac{{\frac{{4{x_0} - 4x}}{{x{x_0}}}}}{{x - {x_0}}}\)
\( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{4{x_0} - 4x}}{{x{x_0}\left( {x - {x_0}} \right)}} \)\(= \mathop {\lim }\limits_{x \to {x_0}} \frac{{ - 4\left( {x - {x_0}} \right)}}{{x{x_0}\left( {x - {x_0}} \right)}}\)
\( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{ - 4}}{{x{{\rm{x}}_0}}} \)\(= \frac{{ - 4}}{{{x_0}.{x_0}}} \)\(= - \frac{4}{{x_0^2}}\)
Vậy \(f'\left( x \right) \)\(= {\left( {\frac{4}{x}} \right)^\prime } \)\(= - \frac{4}{{{x^2}}}\) trên các khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {0; + \infty } \right)\).
-- Mod Toán 11 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Hoạt động khám phá 3 trang 40 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Thực hành 3 trang 41 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Giải Bài 2 trang 41 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Giải Bài 3 trang 42 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Giải Bài 4 trang 42 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Giải Bài 5 trang 42 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Giải Bài 6 trang 42 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Bài tập 1 trang 38 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST
Bài tập 2 trang 38 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST
Bài tập 3 trang 39 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST
Bài tập 4 trang 39 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST
Bài tập 5 trang 39 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST