Thực hành 2 trang 40 SGK Toán 11 Chân trời sáng tạo tập 2
Cho \(\left( C \right)\) là đồ thị của hàm số \(f\left( x \right) = \frac{1}{x}\) và điểm \(M\left( {1;1} \right) \in \left( C \right)\). Tính hệ số góc của tiếp tuyến của \(\left( C \right)\) tại điểm \(M\) và viết phương trình tiếp tuyến đó.
Hướng dẫn giải chi tiết Thực hành 2
Phương pháp giải:
Hệ số góc: \(f'\left( {{x_0}} \right)\).
Phương trình tiếp tuyến: \(y - f\left( {{x_0}} \right) = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right)\).
Lời giải chi tiết:
Ta có: \({\left( {\frac{1}{x}} \right)^\prime } = - \frac{1}{{{x^2}}}\) nên tiếp tuyến của \(\left( C \right)\) tại điểm \(M\) có hệ số góc là: \(f'\left( 1 \right) = - \frac{1}{{{1^2}}} = 1\)
Phương trình tiếp tuyến của \(\left( C \right)\) tại điểm \(M\) là: \(y - 1 = 1\left( {x - 1} \right) \Leftrightarrow y = x\).
-- Mod Toán 11 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Vận dụng trang 39 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Hoạt động khám phá 2 trang 39 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Hoạt động khám phá 3 trang 40 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Thực hành 3 trang 41 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Giải Bài 1 trang 41 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Giải Bài 2 trang 41 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Giải Bài 3 trang 42 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Giải Bài 4 trang 42 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Giải Bài 5 trang 42 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Giải Bài 6 trang 42 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Bài tập 1 trang 38 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST
Bài tập 2 trang 38 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST
Bài tập 3 trang 39 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST
Bài tập 4 trang 39 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST
Bài tập 5 trang 39 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST