Giải Bài 6.5 trang 9 SGK Toán 11 Kết nối tri thức tập 2
Chứng minh rằng: \(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=2\)
Hướng dẫn giải chi tiết Bài 6.5
Phương pháp giải
Ta có sử dụng công thức: \( \sqrt{a \pm \sqrt{b}} = \sqrt{\frac{a+\sqrt{a^2-b}}{2}} \pm \sqrt{\frac{a-\sqrt{a^2-b}}{2}}\)
Lời giải chi tiết
Với a = 4, b = 3, ta có:
\((\sqrt{\frac{4+\sqrt{4^2-3}}{2}} + \sqrt{\frac{4-\sqrt{4^2-3}}{2}}) -(\sqrt{\frac{4-\sqrt{4^2-3}}{2}} - \sqrt{\frac{4+\sqrt{4^2-3}}{2}})\)\(=\sqrt{3} + 1 - 1 + \sqrt{3}\)\(=\begin{aligned} 2\sqrt{3} \ &= 2 \cdot \sqrt{\frac{4}{3}} \ &= 2 \end{aligned} \)
-- Mod Toán 11 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Giải Bài 6.3 trang 9 SGK Toán 11 Kết nối tri thức tập 2 - KNTT
Giải Bài 6.4 trang 9 SGK Toán 11 Kết nối tri thức tập 2 - KNTT
Giải Bài 6.6 trang 9 SGK Toán 11 Kết nối tri thức tập 2 - KNTT
Giải Bài 6.7 trang 9 SGK Toán 11 Kết nối tri thức tập 2 - KNTT
Giải Bài 6.8 trang 9 SGK Toán 11 Kết nối tri thức tập 2 - KNTT
Bài tập 6.1 trang 6 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.2 trang 6 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.3 trang 6 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.4 trang 6 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.5 trang 6 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.6 trang 7 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.7 trang 7 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.8 trang 7 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.9 trang 7 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.10 trang 7 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT