Bài tập 6.5 trang 6 SBT Toán 11 Tập 2 Kết nối tri thức
Cho a là số thực đương. Rút gọn các biểu thức sau:
a) \({\left( {{a^{\sqrt 6 }}} \right)^{\sqrt {24} }}\);
b) \({a^{\sqrt 2 }}{\left( {\frac{1}{a}} \right)^{\sqrt 2 - 1}}\);
c) \({a^{ - \sqrt 3 }}:{a^{{{(\sqrt 3 - 1)}^2}}}\);
d) \(\sqrt[3]{a} \cdot \sqrt[4]{a} \cdot \sqrt[{12}]{{{a^5}}}\).
Hướng dẫn giải chi tiết Bài 6.5
a) Ta có: \({\left( {{a^{\sqrt 6 }}} \right)^{\sqrt {24} }} = {a^{\sqrt {6 \cdot 24} }} = {a^{12}}\).
b) Ta có: \({a^{\sqrt 2 }}{\left( {\frac{1}{a}} \right)^{\sqrt 2 - 1}} = {a^{\sqrt 2 }} \cdot {a^{1 - \sqrt 2 }} = a\).
c) Ta có: \({a^{ - \sqrt 3 }}:{a^{{{(\sqrt 3 - 1)}^2}}} = {a^{ - \sqrt 3 }}:{a^{4 - 2\sqrt 3 }} = {a^{ - 4 + \sqrt 3 }}\).
d) Ta có: \(\sqrt[3]{a} \cdot \sqrt[4]{a} \cdot \sqrt[{12}]{{{a^5}}} = {a^{\frac{1}{3}}} \cdot {a^{\frac{1}{4}}} \cdot {a^{\frac{5}{{12}}}} = a\).
-- Mod Toán 11 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Bài tập 6.3 trang 6 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.4 trang 6 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.6 trang 7 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.7 trang 7 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.8 trang 7 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.9 trang 7 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.10 trang 7 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT