YOMEDIA
NONE

Bài tập 26 trang 38 SBT Toán 11 Tập 2 Cánh diều - CD

Bài tập 26 trang 38 SBT Toán 11 Tập 2 Cánh diều

Cho \(a > 0,b > 0\) thỏa mãn \({a^2} + {b^2} = 7ab\). Khi đó, \(\log \left( {a + b} \right)\) bằng?

A. \(\log 9 + \frac{1}{2}\left( {\log a + \log b} \right).\)

B. \(\log 3 + \frac{1}{2}\log a.\log b.\)

C. \(\log 3 + \frac{1}{2}\log a + \log b.\)

D. \(\log 3 + \frac{1}{2}\left( {\log a + \log b} \right).\)

ATNETWORK

Hướng dẫn giải chi tiết Bài tập 26

Theo đề bài: \({a^2} + {b^2} = 7ab \Leftrightarrow {a^2} + 2ab + {b^2} = 9ab \Leftrightarrow {\left( {a + b} \right)^2} = 9ab.\)

\(\begin{array}{l} \Rightarrow \log \left( {a + b} \right) = \frac{1}{2}\log {\left( {a + b} \right)^2} = \frac{1}{2}\log \left( {9ab} \right) = \frac{1}{2}\log {3^2} + \frac{1}{2}\log ab\\ = \log 3 + \frac{1}{2}\left( {\log a + \log b} \right).\end{array}\)

Đáp án D.

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 26 trang 38 SBT Toán 11 Tập 2 Cánh diều - CD HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON