Bài tập 16 trang 95 SBT Toán 11 Tập 2 Cánh diều
Cho hình chóp S.ABC thoả mãn SA = SB = SC. Gọi O là tâm đường tròn ngoại tiếp của tam giác ABC. Chứng minh rằng SO ⊥ (ABC)?
Hướng dẫn giải chi tiết Bài tập 16
Gọi O’ là hình chiếu của S trên (ABC). Khi đó, SO’ ⊥ (ABC).
Mà O’A, O’B, O’C đều nằm trên (ABC) nên SO’ ⊥ O’A, SO’ ⊥ O’B, SO’ ⊥ O’C.
Xét tam giác SO’A và tam giác SO’B có:
SA = SB (gt);
SO’ chung
Suy ra ∆SO’A = ∆SO’B (cạnh huyền – cạnh góc vuông)
Do đó: O’A = O’B (hai cạnh tương ứng)
Tương tự: ∆SO’A = ∆SO’C, suy ra O’A = O’C.
Từ đó ta có: O’A = O’B = O’C hay O’ là tâm đường tròn ngoại tiếp tam giác ABC.
Suy ra: O ≡ O’, mà SO’ ⊥ (ABC).
Vậy SO ⊥ (ABC).
-- Mod Toán 11 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Bài tập 14 trang 95 SBT Toán 11 Tập 2 Cánh diều - CD
Bài tập 15 trang 95 SBT Toán 11 Tập 2 Cánh diều - CD
Bài tập 17 trang 95 SBT Toán 11 Tập 2 Cánh diều - CD
Bài tập 18 trang 95 SBT Toán 11 Tập 2 Cánh diều - CD
Bài tập 19 trang 95 SBT Toán 11 Tập 2 Cánh diều - CD
Bài tập 20 trang 95 SBT Toán 11 Tập 2 Cánh diều - CD
Bài tập 21 trang 95 SBT Toán 11 Tập 2 Cánh diều - CD