Bài tập 12 trang 74 SBT Toán 11 Tập 1 Cánh diều
Giả sử \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\) và \(\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = M\) \(\left( {L,M \in \mathbb{R}} \right)\). Phát biểu nào sau đây là SAI?
A. \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) + g\left( x \right)} \right] = L + M\)
B. \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) - g\left( x \right)} \right] = L - M\)
C. \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right).g\left( x \right)} \right] = L.M\)
D. \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{L}{M}\)
Hướng dẫn giải chi tiết Bài tập 12
Định lí về các phép toán trên giới hạn hữu hạn của hàm số: Nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\) và \(\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = M\) thì:
\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) + g\left( x \right)} \right] = L + M\), \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) - g\left( x \right)} \right] = L - M\)
\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right).g\left( x \right)} \right] = L.M\), \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{L}{M}\) nếu \(M \ne 0\).
Ta nhận thấy các đáp án A, B, C đều đúng so với định lí này, riêng đáp án D còn thiếu điều kiện \(M \ne 0\).
Vậy đáp án cần chọn là đáp án D.
-- Mod Toán 11 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Bài 5 trang 72 SGK Toán 11 Cánh diều Tập 1 - CD
Bài 6 trang 72 SGK Toán 11 Cánh diều Tập 1 - CD
Bài tập 13 trang 74 SBT Toán 11 Tập 1 Cánh diều - CD
Bài tập 14 trang 75 SBT Toán 11 Tập 1 Cánh diều - CD
Bài tập 15 trang 75 SBT Toán 11 Tập 1 Cánh diều - CD
Bài tập 16 trang 75 SBT Toán 11 Tập 1 Cánh diều - CD
Bài tập 17 trang 75 SBT Toán 11 Tập 1 Cánh diều - CD
Bài tập 18 trang 75 SBT Toán 11 Tập 1 Cánh diều - CD
Bài tập 19 trang 76 SBT Toán 11 Tập 1 Cánh diều - CD
Bài tập 20 trang 76 SBT Toán 11 Tập 1 Cánh diều - CD
Bài tập 21 trang 76 SBT Toán 11 Tập 1 Cánh diều - CD
Bài tập 22 trang 76 SBT Toán 11 Tập 1 Cánh diều - CD
Bài tập 23 trang 76 SBT Toán 11 Tập 1 Cánh diều - CD