Bài tập 22 trang 76 SBT Toán 11 Tập 1 Cánh diều
Cho \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right) - 4}}{{x - 1}} = 2\). Tính:
a) \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\)
b) \(\mathop {\lim }\limits_{x \to 1} 3f\left( x \right)\)
Hướng dẫn giải chi tiết Bài tập 22
a) Giả sử \(\mathop {\lim }\limits_{x \to 1} \left( {f\left( x \right) - 4} \right) = L \ne 0\).
Khi đó \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right) - 4}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \left( {f\left( x \right) - 4} \right).\mathop {\lim }\limits_{x \to 1} \frac{1}{{x - 1}}\).
Ta nhận thấy \(\mathop {\lim }\limits_{x \to 1} \frac{1}{{x - 1}} = + \infty \) hoặc \(\mathop {\lim }\limits_{x \to 1} \frac{1}{{x - 1}} = - \infty \).
Nên \(\mathop {\lim }\limits_{x \to 1} \left( {f\left( x \right) - 4} \right)\mathop {\lim }\limits_{x \to 1} \frac{1}{{x - 1}}\) không thể bằng 2.
Do vậy \(\mathop {\lim }\limits_{x \to 1} \left( {f\left( x \right) - 4} \right) = 0 \Rightarrow \mathop {\lim }\limits_{x \to 1} f\left( x \right) = 4\).
b) Theo câu a, ta có \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = 4\).
Suy ra: \(\mathop {\lim }\limits_{x \to 1} 3f\left( x \right) = \mathop {\lim }\limits_{x \to 1} 3.\mathop {\lim }\limits_{x \to 1} f\left( x \right) = 3.4 = 12\).
-- Mod Toán 11 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.