Bài tập 17 trang 75 SBT Toán 11 Tập 1 Cánh diều
Sử dụng định nghĩa, chứng minh rằng:
a) \(\mathop {\lim }\limits_{x \to - 2} {x^3} = - 8\)
b) \(\mathop {\lim }\limits_{x \to - 2} \frac{{{x^2} - 4}}{{x + 2}} = - 4\)
Hướng dẫn giải chi tiết Bài tập 17
a) Xét hàm số \(f\left( x \right) = {x^3}\). Giả sử \(\left( {{x_n}} \right)\) là dãy số bất kì thoả mãn \(\lim {x_n} = - 2\).
Ta có: \(\lim f\left( {{x_n}} \right) = \lim x_n^3 = {\left( { - 2} \right)^3} = - 8\). Như vậy \(\mathop {\lim }\limits_{x \to - 2} {x^3} = - 8\).
b) Xét hàm số \(g\left( x \right) = \frac{{{x^2} - 4}}{{x + 2}}\). Giả sử \(\left( {{x_n}} \right)\) là dãy số bất kì thoả mãn \({x_n} \ne - 2\) và \(\lim {x_n} = - 2\).
Ta có: \(\lim g\left( {{x_n}} \right) = \lim \frac{{x_n^2 - 4}}{{{x_n} + 2}} = \lim \left( {{x_n} - 2} \right) = \left( { - 2} \right) - 2 = - 4\).
Vậy \(\mathop {\lim }\limits_{x \to - 2} \frac{{{x^2} - 4}}{{x + 2}} = - 4\).
-- Mod Toán 11 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Bài tập 15 trang 75 SBT Toán 11 Tập 1 Cánh diều - CD
Bài tập 16 trang 75 SBT Toán 11 Tập 1 Cánh diều - CD
Bài tập 18 trang 75 SBT Toán 11 Tập 1 Cánh diều - CD
Bài tập 19 trang 76 SBT Toán 11 Tập 1 Cánh diều - CD
Bài tập 20 trang 76 SBT Toán 11 Tập 1 Cánh diều - CD
Bài tập 21 trang 76 SBT Toán 11 Tập 1 Cánh diều - CD
Bài tập 22 trang 76 SBT Toán 11 Tập 1 Cánh diều - CD
Bài tập 23 trang 76 SBT Toán 11 Tập 1 Cánh diều - CD