Bài tập 10 trang 195 SGK Toán 11 NC
a. Tính f′(3) và f′(−4) nếu f(x) = x3
b. Tính f′(1) và f′(9) nếu \(f(x) = \sqrt x \)
Hướng dẫn giải chi tiết
a) Với x0 ∈ R ta có:
\(\begin{array}{l}
f\prime ({x_0}) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f(x) - f({x_0})}}{{x - {x_0}}}\\
= \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x^3} - x_0^3}}{{x - {x_0}}}\\
= \mathop {\lim }\limits_{x \to {x_0}} (x + x{x_0} + x_0^2) = 3x_0^2
\end{array}\)
Suy ra f′(3) = 27, f′(−4) = 48
b) Với x0 > 0, ta có:
\(\begin{array}{l}
f\prime ({x_0}) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f(x) - f({x_0})}}{{x - {x_0}}}\\
= \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sqrt x - \sqrt {{x_0}} }}{{x - {x_0}}}\\
= \mathop {\lim }\limits_{x \to {x_0}} \frac{1}{{\sqrt x + \sqrt {{x_0}} }} = \frac{1}{{2\sqrt {{x_0}} }}\\
\Rightarrow f\prime (1) = \frac{1}{2},f\prime (9) = \frac{1}{6}
\end{array}\)
-- Mod Toán 11 HỌC247
-
Từ giây thứ mấy thì viên đạn thứ nhất xa điểm xuất phát hơn viên đạn thứ hai ?
bởi Lê Minh Thư
13/05/2017
Hai viên đạn cùng rời khỏi nòng súng tại thời điểm t = 0 với vận tốc khác nhau; viên đạn thứ
nhất với vận tốc u(t)=3t2(m/s), viên đạn thứ hai với vận tốc v(t)=2t+5(m/s). Hỏi từ giây thứ mấy thì viên đạn thứ nhất xa điểm xuất phát hơn viên đạn thứ hai ?
Theo dõi (0) 1 Trả lời -
Tiếp tuyến song song với đường thẳng \(d: 9x-y-7=0\)
bởi minh thuận
07/02/2017
Viết phương trình tiếp tuyến với đồ thị hàm số \(y=x^3+3x^2-2\), biết tiếp tuyến song song với đường thẳng \(d: 9x-y-7=0\)
Theo dõi (0) 1 Trả lời