YOMEDIA
NONE

Bài tập 1 trang 45 SBT Toán 11 Tập 1 Cánh diều - CD

Bài tập 1 trang 45 SBT Toán 11 Tập 1 Cánh diều

Cho dãy số \(\left( {{u_n}} \right)\) biết \({u_1} = 2\) và \({u_n} = \frac{{{u_{n - 1}} + 1}}{2}\) với mọi \(n \ge 2\). Ba số hạng đầu tiên của dãy số lần lượt là:

A. \(2;{\rm{ 1; }}\frac{3}{2}\)

B. \(2;{\rm{ }}\frac{3}{2}{\rm{; }}\frac{5}{2}\)

C. \(2;{\rm{ }}\frac{3}{2}{\rm{; }}\frac{5}{4}\)

D. \(2;{\rm{ }}\frac{3}{2};{\rm{ 2}}\)

ATNETWORK

Hướng dẫn giải chi tiết Bài tập 1

Ta có: \({u_2} = \frac{{{u_1} + 1}}{2} = \frac{{2 + 1}}{2} = \frac{3}{2}\); \({u_3} = \frac{{{u_2} + 1}}{2} = \frac{{\frac{3}{2} + 1}}{2} = \frac{5}{4}\).

Vậy ba số hạng đầu tiên của dãy số là \(2;{\rm{ }}\frac{3}{2};{\rm{ }}\frac{5}{4}\).

Đáp án đúng là C.

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 1 trang 45 SBT Toán 11 Tập 1 Cánh diều - CD HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON