Bài tập 7.35 trang 38 SBT Toán 11 Tập 2 Kết nối tri thức
Cho hình lăng trụ \(ABC \cdot A'B'C'\) có \(A'B'C'\) và \(AA'C'\) là hai tam giác đều cạnh \(a\). Biết \(\left( {ACC'A'} \right) \bot \left( {A'B'C'} \right)\). Tính theo \(a\) thể tích khối lăng trụ \(ABC \cdot A'B'C'\)?
Hướng dẫn giải chi tiết Bài 7.35
Kẻ \(AH \bot A'C'\) tại \(H\) thì \(AH \bot \left( {A'B'C'} \right)\).
Ta có \({S_{A'B'C'}} = \frac{{{a^2}\sqrt 3 }}{4};AH = \frac{{a\sqrt 3 }}{2}\)
Suy ra \({V_{ABC.A'B'C'}} = {S_{A'B'C'}} \cdot AH\)\( = \frac{{{a^2}\sqrt 3 }}{4} \cdot \frac{{a\sqrt 3 }}{2} = \frac{{3{a^3}}}{8}\).
-- Mod Toán 11 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Bài tập 7.33 trang 41 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 7.34 trang 41 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 7.36 trang 41 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 7.37 trang 41 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 7.38 trang 41 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 7.39 trang 41 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 7.40 trang 41 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT